<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于支持向量回歸與極限學習機的高爐鐵水溫度預測

王振陽 江德文 王新東 張建良 劉征建 趙寶軍

王振陽, 江德文, 王新東, 張建良, 劉征建, 趙寶軍. 基于支持向量回歸與極限學習機的高爐鐵水溫度預測[J]. 工程科學學報, 2021, 43(4): 569-576. doi: 10.13374/j.issn2095-9389.2020.05.28.001
引用本文: 王振陽, 江德文, 王新東, 張建良, 劉征建, 趙寶軍. 基于支持向量回歸與極限學習機的高爐鐵水溫度預測[J]. 工程科學學報, 2021, 43(4): 569-576. doi: 10.13374/j.issn2095-9389.2020.05.28.001
WANG Zhen-yang, JIANG De-wen, WANG Xin-dong, ZHANG Jian-liang, LIU Zheng-jian, ZHAO Bao-jun. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine[J]. Chinese Journal of Engineering, 2021, 43(4): 569-576. doi: 10.13374/j.issn2095-9389.2020.05.28.001
Citation: WANG Zhen-yang, JIANG De-wen, WANG Xin-dong, ZHANG Jian-liang, LIU Zheng-jian, ZHAO Bao-jun. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine[J]. Chinese Journal of Engineering, 2021, 43(4): 569-576. doi: 10.13374/j.issn2095-9389.2020.05.28.001

基于支持向量回歸與極限學習機的高爐鐵水溫度預測

doi: 10.13374/j.issn2095-9389.2020.05.28.001
基金項目: 中國博士后科學基金面上資助項目(2019M650490)
詳細信息
    通訊作者:

    E-mail: wangzhenyang@ustb.edu.cn

  • 中圖分類號: TF543.1

Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine

More Information
  • 摘要: 選取某4000 m3級別高爐2014年至2019年時間范圍內的日平均數據,以鐵水溫度為目標函數,首先對鐵水溫度的特征參量進行線性與非線性相關性分析、特征選擇與規范化處理,獲取了顯著影響鐵水溫度的正負相關性特征參量。在此基礎上,基于支持向量回歸與極限學習機兩種算法對鐵水溫度構建預測模型,模型均可對鐵水溫度實現有效預測,基于支持向量回歸算法構建的預測模型較優,預測平均絕對誤差為4.33 ℃,±10 ℃誤差范圍內的命中率為94.0%。

     

  • 圖  1  鐵水溫度初選特征參量樣本散點圖

    Figure  1.  Scatter plot of the primary characteristic parameters of hot metal temperature

    圖  2  鐵水溫度與初選特征參量之間相關系數。(a)Pearson相關系數;(b)Spearman相關系數

    Figure  2.  Correlation coefficient between hot metal temperature and primary characteristic parameters: (a) Pearson; (b) Spearman

    圖  3  鐵水溫度測量值與預測值比對。(a)基于SVR算法;(b)基于ELM算法

    Figure  3.  Comparison of measured and predictive values of hot metal temperature:(a) prediction value based on support vector regression (SVR);(b) prediction value based on extreme learning machine (ELM).

    圖  4  鐵水溫度預測值與測量值偏差。(a)基于SVR的鐵溫預測值與測量值偏差;(b)基于ELM的鐵溫預測值與測量值偏差;(c)基于SVR與ELM預測鐵溫誤差概率密度分布函數

    Figure  4.  Deviation of predictive value of hot metal temperature from the measured value: (a) based on SVR; (b) based on ELM; (c) the probability density distribution function of hot metal temperature error based on SVR and ELM

    圖  5  鐵水溫度預測的百分比誤差散點分布統計圖。(a)SVR;(b)ELM

    Figure  5.  Scatter distribution statistics of percentage error in hot metal temperature prediction: (a) SVR; (b) ELM

    表  1  鐵水溫度預測的初選特征參量

    Table  1.   Primary data items for hot metal temperature prediction

    Operating parametersState parameters
    Blast volumeVolume utilization coefficient
    Blast pressureSynthetic load
    Blast temperatureGas utilization efficiency
    Blast velocity energyDaily hot metal production
    Coke ratePressure difference
    Coal injection ratePermeability index
    Nut coke rateBosh gas volume
    Fuel rateBosh gas index
    Oxygen enrichmentCooling water temperature difference
    Pulverized coal injection per hourCurrent hot metal temperature
    Theoretical combustion temperatureHot metal Si content
    下載: 導出CSV

    表  2  鐵水溫度終選特征參量

    Table  2.   Final characteristic parameters of hot metal temperature

    No.Characteristic parameters
    1Fuel rate
    2Nut coke rate
    3Coke rate
    4Blast temperature
    5Bosh gas index
    6Permeability index
    7Hot metal Si content
    8Daily hot metal production
    9Current hot metal temperature
    10Synthetic load
    11Pressure difference
    12Gas utilization efficiency
    13Volume utilization coefficient
    14Cooling water temperature difference
    下載: 導出CSV

    表  3  SVR與ELM算法鐵水溫度預測結果綜合定量表征

    Table  3.   Quantitative characterization of SVR and ELM model prediction results of hot metal temperature

    ModelMAPE/%MAE /℃RMSE/℃HP(±10 ℃)/%
    SVR0.294.335.6094.0
    ELM0.314.696.0988.5
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang Z Y, Zhang J L, Liu Z J, et al. Status, technological progress, and development directions of the ironmaking industry in China. Ironmaking Steelmaking, 2019, 46(10): 937 doi: 10.1080/03019233.2019.1697111
    [2] Wang Z Y, Zhang J L, An G, et al. Analysis on the oversize blast furnace desulfurization and a sulfide capacity prediction model based on congregated electron phase. Metall Mater Trans B, 2016, 47(1): 127 doi: 10.1007/s11663-015-0462-3
    [3] Martin R D, Obeso F, Mochon J, et al. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools. Ironmaking Steelmaking, 2007, 34(3): 241 doi: 10.1179/174328107X155358
    [4] Jimenez J, Mochon J, de Ayala J S, et al. Blast furnace hot metal temperature prediction through neural networks-based models. ISIJ Int, 2004, 44(3): 573 doi: 10.2355/isijinternational.44.573
    [5] Ding Z Y, Zhang J, Liu Y. Ensemble non-Gaussian local regression for industrial silicon content prediction. ISIJ Int, 2017, 57(11): 2022 doi: 10.2355/isijinternational.ISIJINT-2017-251
    [6] Gao C H, Chen J M, Zeng J S, et al. A chaos-based iterated multistep predictor for blast furnace ironmaking process. AIChE J, 2009, 55(4): 947 doi: 10.1002/aic.11724
    [7] Cui G M, Li J, Zhang Y, et al. Prediction modeling study for blast furnace hot metal temperature based on T-S fuzzy neural network model. Iron Steel, 2013, 48(11): 11

    崔桂梅, 李靜, 張勇, 等. 基于T-S模糊神經網絡模型的高爐鐵水溫度預測建模. 鋼鐵, 2013, 48(11):11
    [8] Cui G M, Cheng S. Predictive modeling of blast furnace temperature by using distributed neural network model. J Iron Steel Res, 2014, 26(6): 27

    崔桂梅, 程史. 基于分布式神經網絡模型的高爐爐溫預測建模. 鋼鐵研究學報, 2014, 26(6):27
    [9] Shi L, Tang J J, Yu T, et al. Parameters prediction on furnace temperature on blast furnace based on a nonlinear spline transform-PLS. J Iron Steel Res, 2013, 25(2): 20

    石琳, 湯佳佳, 于濤, 等. 基于樣條變換的非線性PLS的反應高爐爐溫的參數預測. 鋼鐵研究學報, 2013, 25(2):20
    [10] Zhang X M, Kano M, Matsuzaki S. A comparative study of deep and shallow predictive techniques for hot metal temperature prediction in blast furnace ironmaking. Comput Chem Eng, 2019, 130: 106575 doi: 10.1016/j.compchemeng.2019.106575
    [11] Zhang X M, Kano M, Matsuzaki S. Ensemble pattern trees for predicting hot metal temperature in blast furnace. Comput Chem Eng, 2019, 121: 442 doi: 10.1016/j.compchemeng.2018.10.022
    [12] Diaz J, Fernandez F J, Prieto M M. Hot metal temperature forecasting at steel plant using multivariate adaptive regression splines. Metals, 2020, 10(1): 41
    [13] Hashimoto Y, Sawa Y, Kano M. Online prediction of hot metal temperature using transient model and moving horizon estimation. ISIJ Int, 2019, 59(9): 1534 doi: 10.2355/isijinternational.ISIJINT-2019-101
    [14] Su X L, Zhang S, Yin Y X, et al. Prediction model of hot metal temperature for blast furnace based on improved multi-layer extreme learning machine. Int J Mach Learn Cybern, 2019, 10(10): 2739 doi: 10.1007/s13042-018-0897-3
    [15] Zhao H, Zhao D T, Yue Y J, et al. Study on prediction method of hot metal temperature in blast furnace // IEEE International Conference on Mechatronics and Automation. Takamatsu, 2017: 316.
    [16] Wang Y K, Liu X Y, Zhang B L. On feature selection and blast furnace temperature tendency prediction in hot metal based on SVM-RFE // Australian and New Zealand Control Conference. Melbourne, 2018: 371.
    [17] Yue Y J, Dong A, Zhao H, et al. Study on prediction model of blast furnace hot metal temperature // IEEE International Conference on Mechatronics and Automation. Harbin, 2016: 1396.
    [18] Liu Y, Gao Z. Enhanced just-in-time modelling for online quality prediction in BF ironmaking. Ironmaking Steelmaking, 2015, 42(5): 321 doi: 10.1179/1743281214Y.0000000229
    [19] Guo D W, Zhou P. Soft-sensor modeling of silicon content in hot metal based on sparse robust LS-SVR and multi-objective optimization. Chin J Eng, 2016, 38(9): 1233

    郭東偉, 周平. 基于稀疏化魯棒LS-SVR與多目標優化的鐵水硅含量軟測量建模. 工程科學學報, 2016, 38(9):1233
    [20] Zhang H G, Zhang S, Yin Y X. Multi-class fault diagnosis of BF based on global optimization LS-SVM. Chin J Eng, 2017, 39(1): 39

    張海剛, 張森, 尹怡欣. 基于全局優化支持向量機的多類別高爐故障診斷. 工程科學學報, 2017, 39(1):39
    [21] Chu F, Ye J F, Ma X P, et al. Online performance prediction of CCPP byproduct coal-gas system based on online sequential extreme learning machine. Chin J Eng, 2016, 38(6): 861

    褚菲, 葉俊鋒, 馬小平, 等. 基于OS-ELM的CCPP副產煤氣燃料系統在線性能預測. 工程科學學報, 2016, 38(6):861
    [22] Li A L, Zhao Y M, Cui G M. Prediction model of blast furnace temperature based on ELM with grey correlation analysis. J Iron Steel Res, 2015, 27(11): 33

    李愛蓮, 趙永明, 崔桂梅. 基于灰色關聯分析的ELM高爐溫度預測模型. 鋼鐵研究學報, 2015, 27(11):33
    [23] Chen H Z, Yang J P, Lu X C, et al. Quality prediction of the continuous casting bloom based on the extreme learning machine. Chin J Eng, 2018, 40(7): 815

    陳恒志, 楊建平, 盧新春, 等. 基于極限學習機(ELM)的連鑄坯質量預測. 工程科學學報, 2018, 40(7):815
    [24] Chen P, Li Q, Zhang D Z, et al. A survey of multimodal machine learning. Chin J Eng, 2020, 42(5): 557

    陳鵬, 李擎, 張德政, 等. 多模態學習方法綜述. 工程科學學報, 2020, 42(5):557
    [25] Tunckaya Y. Performance assessment of permeability index prediction in an ironmaking process via soft computing techniques. Proc Inst Mech Eng Part E-J Process Mech Eng, 2017, 231(6): 1101 doi: 10.1177/0954408916654199
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  1598
  • HTML全文瀏覽量:  777
  • PDF下載量:  139
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-28
  • 刊出日期:  2021-04-26

目錄

    /

    返回文章
    返回