Microstructure evolution during remelting of 9Cr18 semisolid billet prepared by sloping plate method
-
摘要: 研究利用傾斜板法制備的9Cr18半固態坯料在二次重熔過程中微觀組織演變,以期對后續觸變成形提供必要的理論基礎。研究結果表明,采用傾斜板澆注法可以得到優質的9Cr18半固態坯料,其典型組織為初生固相奧氏體(γ1)球狀晶粒和晶界網狀組織構成,網狀組織為二次奧氏體(γ2)和M7C3碳化物液相共晶組織。球狀晶粒的平均直徑為93.5 μm,形狀因子0.69,半固態坯料球狀晶粒邊界光滑,大小相對均勻。固液兩相中Fe、C、Cr存在著明顯的元素差異。液相組織中Cr、C元素富集,固相中Fe含量較高。采用波浪形傾斜板法制備的9Cr18合金半固態坯料重熔組織形貌優于傳統鑄錠重熔組織。半固態坯料重熔后的組織化學成分更為均勻,晶粒也更圓整,固液界面平滑,且加熱溫度越高,晶粒越圓整,液相率越高。二次重熔后碳化物尺寸明顯減小,平均寬度僅為0.5 μm,長度大大減小使得其形態接近粒狀。Abstract: Semisolid processing is a new near-net-shape manufacturing process suitable for fabricating components with complex shapes. Semisolid billet remelting is a key process performed prior to the subsequent semisolid thixoforming. Understanding the remelting behavior will provide significant theoretical guidance for the semisolid thixoforming process. In this study, during remelting, we investigated the microstructural evolution of a 9Cr18 semisolid billet prepared by the sloping plate method. The microstructures of 9Cr18 specimens for a semisolid billet and traditional casting ingot were discussed. The effects of the initial microstructure and remelting temperature on the remelting behavior were also clarified. The microstructural evolution and remelting behavior were observed via optical microscopy, scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The results show that an excellent 9Cr18 semisolid billet can be obtained via the sloping plate method. Forced convection through the sloping plate was found to play a key role in breaking the continuous distribution of dendrites. The typical microstructure was found to exhibit a primary solid austenite globular grain (γ1) and a eutectic structure of secondary austenite (γ2) and M7C3 carbide. The average size of a globular grain was determined to be 93.5 μm and the shape factor was 0.69. The globular grains showed a smooth boundaries. The Fe, C, and Cr elements showed obviously different contents in the solid and liquid phases. The Cr and C elements were enriched in the liquid phase, whereas the Fe content was higher in the solid phase. Compared with the traditional casting ingot, the remelting microstructure of the 9Cr18 semisolid billet prepared by the sloping plate method was more suitable for subsequent semisolid thixoforming. A more even distribution of the chemical composition and more globular grains can be obtained after semisolid remelting. The solid/liquid interface was smooth on the remelted specimen. The width of the M7C3 carbide decreased to 0.5 μm after remelting and the morphology became nearly granular. The observed microstructural evolution during remelting of the 9Cr18 semisolid billet contributes to our understanding of the thixotropic behavior in the subsequent semisolid forming process.
-
Key words:
- sloping plate method /
- 9Cr18 stainless steel /
- semisolid billet /
- remelting /
- microstructure evolution
-
表 1 9Cr18不銹鋼的化學成分(質量分數)
Table 1. Chemical composition of 9Cr18 steel
% C Cr Si Mn P S Al Ni Fe 0.97 17.33 0.52 0.35 0.02 0.005 0.10 0.16 Bal. 259luxu-164 -
參考文獻
[1] Flemings M C. Behavior of metal alloys in the semisolid state. Metall Trans A, 1991, 22(5): 957 doi: 10.1007/BF02661090 [2] Meng Y. Features and development of semisolid metal forming technology. J Netshape Form Eng, 2016, 7(4): 21 doi: 10.3969/j.issn.1674-6457.2016.04.004孟毅. 半固態成形工藝特點及發展現狀. 精密成形工程, 2016, 7(4):21 doi: 10.3969/j.issn.1674-6457.2016.04.004 [3] Balan T, Becker E, Langlois L, et al. A new route for semi-solid steel forging. CIRP Annals, 2017, 66(1): 297 doi: 10.1016/j.cirp.2017.04.111 [4] Rogal L. Semi-solid processing of the CoCrCuFeNi high entropy alloy. Mater Des, 2017, 119: 406 doi: 10.1016/j.matdes.2017.01.082 [5] Meng Y, Zhang J S, Yi Y S, et al. Study on the effects of forming conditions on microstructural evolution and forming behaviors of Cr?V?Mo tool steel during multi-stage thixoforging by physical simulation. J Mater Process Technol, 2017, 248: 275 doi: 10.1016/j.jmatprotec.2017.05.039 [6] Rassili A. A review on thixoforming of high melting point alloys. Solid State Phenomena, 2016, 256: 228 doi: 10.4028/www.scientific.net/SSP.256.228 [7] Jorstad J L. SSM provides important advantages; So, why has SSM failed to achieve greater market share? Solid State Phenomena, 2014, 217-218: 481 doi: 10.4028/www.scientific.net/SSP.217-218.481 [8] Gu G C, Pesci P, Becker E, et al. In situ microstructure observation of steel grades in the Semi-Solid state for thixoforging process by using confoncal laser scanning microscopy. Solid State Phenomena, 2014, 217-218: 15 doi: 10.4028/www.scientific.net/SSP.217-218.15 [9] Chen C P, Tsao C Y A. Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior. Acta Mater, 1997, 45(5): 1955 [10] Chen Z G, Fang L, Wu J W, et al. Microstructure evolution of an extruded high silicon semi-solid state aluminum alloys during reheating. Mater Rev, 2019, 33(6): 1006 doi: 10.11896/cldb.201906017陳志國, 方亮, 吳吉文, 等. 半固態擠壓高硅鋁合金二次加熱的微觀組織演變. 材料導報, 2019, 33(6):1006 doi: 10.11896/cldb.201906017 [11] Meng Y, Chen Q, Sugiyama S, et al. Effects of reheating and subsequent rapid cooling on microstructural evolution and semisolid forming behaviors of extruded Mg–8.20Gd–4.48Y–3.34Zn–0.36Zr alloy. J Mater Process Technol, 2017, 247: 192 doi: 10.1016/j.jmatprotec.2017.04.001 [12] Zhang J Y, Li Y D, Li M, et al. Microstructure characteristic and behavior of secondary solidification of 2024 alloy//Proceedings of 2017 China Foundry Activity. Suzhou, 2017: 1張繼淵, 李元東, 李明, 等. 2024合金二次凝固組織及行為研究//2017中國鑄造活動周論文集. 蘇州, 2017: 1 [13] Wang C L, Wu G H, Sun M, et al. Formation of non-dendritic microstructures in preparation of semi-solid Mg-RE alloys slurries: Roles of RE content and cooling rate. J Mater Process Technol, 2020, 279: 116545 doi: 10.1016/j.jmatprotec.2019.116545 [14] Jiang J F, Xiao G F, Wang Y, et al. High temperature deformation behavior and microstructure evolution of wrought nickel-based superalloy GH4037 in solid and semi-solid states. Trans Nonferrous Met Soc China, 2020, 30(3): 710 doi: 10.1016/S1003-6326(20)65248-7 [15] Wang Y J, Song R B, Li Y P. Microstructural evolution and mechanical properties of 9Cr18 steel after thixoforging and heat treatment. Mater Charact, 2017, 127: 64 doi: 10.1016/j.matchar.2017.02.009 [16] Guan R G, Shen Y F, Zhao Z Y, et al. Nanoscale precipitates strengthened lanthanum-bearing Mg–3Sn–1Mn alloys through continuous rheo-rolling. Sci Rep, 2016, 6: 23154 doi: 10.1038/srep23154 [17] Liu Z Y, Mao W M, Wang W P, et al. Microstructure evolution of the A380 aluminum alloy semi-solid slurry prepared by serpentine channel. Chin J Eng, 2016, 38(2): 263劉志勇, 毛衛民, 王偉番, 等. 蛇形通道制備半固態A380鋁合金漿料組織的演變. 工程科學學報, 2016, 38(2):263 [18] Kirkwood D H, Suéry M, Kapranos P, et al. Semi-Solid Processing of Alloys//Springer Series in Materials Science. Springer-Verlag Berlin Heidelberg, 2010 [19] Wang Y J, Song R B, Song R F. Deformation behavior and microstructure evolution of 9Cr18 alloy during semi-solid compression. Acta Metall Sin, 2018, 54(1): 39 doi: 10.11900/0412.1961.2017.00209王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固態觸變壓縮變形行為及組織演變. 金屬學報, 2018, 54(1):39 doi: 10.11900/0412.1961.2017.00209 [20] Kolahdooz A, Dehkordi S A. Effects of important parameters in the production of Al-A356 alloy by semi-solid forming process. J Mater Res Technol, 2019, 8(1): 189 doi: 10.1016/j.jmrt.2017.11.005 [21] Koeune R, Ponthot J P. A one phase thermomechanical model for the numerical simulation of semi-solid material behavior. Application to thixoforming. Int J Plast, 2014, 58: 120 [22] Gu G C, Pesci R, Langlois L, et al. Microstructure investigation and flow behavior during thixoextrusion of M2 steel grade. J Mater Process Technol, 2015, 216: 178 doi: 10.1016/j.jmatprotec.2014.09.009 [23] Kareh K M, O'Sullivan C, Nagira T, et al. Dilatancy in semi-solid steels at high solid fraction. Acta Mater, 2017, 125: 187 doi: 10.1016/j.actamat.2016.11.066 [24] Jiang J F, Wang Y, Nie X, et al. Microstructure evolution of semisolid billet of nano-sized SiCp/7075 aluminum matrix composite during partial remelting process. Mater Des, 2016, 96: 36 doi: 10.1016/j.matdes.2016.02.021 [25] Becker E, Bigot R, Langlois L, et al. Metallurgical and mechanical analysis from thixoforging steel shape. Int J Mater Form, 2008(Suppl 1): 977 [26] Qiu J M, Xiao H, Wang J, et al. Microstructure evolution of semi-solid ZCuSn10 copper alloy during reheating process. Chin J Mater Res, 2015, 29(4): 277 doi: 10.11901/1005.3093.2014.542邱集明, 肖寒, 王佳, 等. 半固態ZCuSn10銅合金二次加熱組織的演化. 材料研究學報, 2015, 29(4):277 doi: 10.11901/1005.3093.2014.542 [27] Roca A S, Fals H D C, Pedron J A, et al. Thixoformability of hypoeutectic gray cast iron. J Mater Process Technol, 2012, 212(6): 1225 -