<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

傾斜板法制備9Cr18半固態坯料二次重熔的微觀組織演變

王永金 宋仁伯

王永金, 宋仁伯. 傾斜板法制備9Cr18半固態坯料二次重熔的微觀組織演變[J]. 工程科學學報, 2021, 43(2): 248-254. doi: 10.13374/j.issn2095-9389.2020.05.12.003
引用本文: 王永金, 宋仁伯. 傾斜板法制備9Cr18半固態坯料二次重熔的微觀組織演變[J]. 工程科學學報, 2021, 43(2): 248-254. doi: 10.13374/j.issn2095-9389.2020.05.12.003
WANG Yong-jin, SONG Ren-bo. Microstructure evolution during remelting of 9Cr18 semisolid billet prepared by sloping plate method[J]. Chinese Journal of Engineering, 2021, 43(2): 248-254. doi: 10.13374/j.issn2095-9389.2020.05.12.003
Citation: WANG Yong-jin, SONG Ren-bo. Microstructure evolution during remelting of 9Cr18 semisolid billet prepared by sloping plate method[J]. Chinese Journal of Engineering, 2021, 43(2): 248-254. doi: 10.13374/j.issn2095-9389.2020.05.12.003

傾斜板法制備9Cr18半固態坯料二次重熔的微觀組織演變

doi: 10.13374/j.issn2095-9389.2020.05.12.003
基金項目: 中國博士后科學基金資助項目(2019M650482);中央高校基本科研業務費資助項目(FRF-TP-18-039A1,FRF-IDRY-19-013);北京市優秀人才培養資助青年骨干個人項目
詳細信息
    通訊作者:

    E-mail: wangyongjin@ustb.edu.cn

  • 中圖分類號: TG142.1

Microstructure evolution during remelting of 9Cr18 semisolid billet prepared by sloping plate method

More Information
  • 摘要: 研究利用傾斜板法制備的9Cr18半固態坯料在二次重熔過程中微觀組織演變,以期對后續觸變成形提供必要的理論基礎。研究結果表明,采用傾斜板澆注法可以得到優質的9Cr18半固態坯料,其典型組織為初生固相奧氏體(γ1)球狀晶粒和晶界網狀組織構成,網狀組織為二次奧氏體(γ2)和M7C3碳化物液相共晶組織。球狀晶粒的平均直徑為93.5 μm,形狀因子0.69,半固態坯料球狀晶粒邊界光滑,大小相對均勻。固液兩相中Fe、C、Cr存在著明顯的元素差異。液相組織中Cr、C元素富集,固相中Fe含量較高。采用波浪形傾斜板法制備的9Cr18合金半固態坯料重熔組織形貌優于傳統鑄錠重熔組織。半固態坯料重熔后的組織化學成分更為均勻,晶粒也更圓整,固液界面平滑,且加熱溫度越高,晶粒越圓整,液相率越高。二次重熔后碳化物尺寸明顯減小,平均寬度僅為0.5 μm,長度大大減小使得其形態接近粒狀。

     

  • 圖  1  波浪形傾斜板制坯裝置示意圖

    Figure  1.  Schematic of wave-shaped sloping plate device

    圖  2  9Cr18半固態重熔工藝曲線

    Figure  2.  Temperature–time curve of 9Cr18 semisolid remelting process

    圖  3  9Cr18不同狀態顯微組織。(a)傳統鑄造枝晶組織;(b)半固態球狀晶組織

    Figure  3.  Microstructures of 9Cr18 specimens: (a) traditional casting ingot; (b) semisolid billet

    圖  4  9Cr18半固態坯料X射線衍射圖譜

    Figure  4.  XRD results of 9Cr18 semisolid billet

    圖  5  半固態球狀晶組織掃描形貌及電子能譜線掃描分析

    Figure  5.  SEM image of the globular grains in semisolid billet and EDS analysis

    圖  6  9Cr18半固態組織掃描電鏡及能譜分析。(a)重熔前;(b)重熔后

    Figure  6.  SEM images and EDS analysis of 9Cr18 semisolid billet: (a) before remelted; (b) remelted

    圖  7  9Cr18半固態坯料重熔顯微組織

    Figure  7.  Microstructure of remelted billet

    圖  8  9Cr18坯料二次重熔顯微組織。(a~c)傳統鑄造坯料;(d~f)半固態坯料

    Figure  8.  Microstructures of semisolid remelted specimens: (a–c) traditional casting ingot; (d–f) semisolid billet

    圖  9  9Cr18半固態坯料差熱曲線與固相率計算結果

    Figure  9.  DSC curve and solid fraction results of 9Cr18 semisolid billet

    圖  10  9Cr18半固態坯料重熔至不同溫度顯微組織。(a)1280 ℃;(b)1300 ℃;(c)1320 ℃

    Figure  10.  SEM micrographs of 9Cr18 steel remelted to different temperatures: (a) 1280 ℃; (b) 1300 ℃; (c) 1320 ℃

    表  1  9Cr18不銹鋼的化學成分(質量分數)

    Table  1.   Chemical composition of 9Cr18 steel %

    CCrSiMnPSAlNiFe
    0.9717.330.520.350.020.0050.100.16Bal.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Flemings M C. Behavior of metal alloys in the semisolid state. Metall Trans A, 1991, 22(5): 957 doi: 10.1007/BF02661090
    [2] Meng Y. Features and development of semisolid metal forming technology. J Netshape Form Eng, 2016, 7(4): 21 doi: 10.3969/j.issn.1674-6457.2016.04.004

    孟毅. 半固態成形工藝特點及發展現狀. 精密成形工程, 2016, 7(4):21 doi: 10.3969/j.issn.1674-6457.2016.04.004
    [3] Balan T, Becker E, Langlois L, et al. A new route for semi-solid steel forging. CIRP Annals, 2017, 66(1): 297 doi: 10.1016/j.cirp.2017.04.111
    [4] Rogal L. Semi-solid processing of the CoCrCuFeNi high entropy alloy. Mater Des, 2017, 119: 406 doi: 10.1016/j.matdes.2017.01.082
    [5] Meng Y, Zhang J S, Yi Y S, et al. Study on the effects of forming conditions on microstructural evolution and forming behaviors of Cr?V?Mo tool steel during multi-stage thixoforging by physical simulation. J Mater Process Technol, 2017, 248: 275 doi: 10.1016/j.jmatprotec.2017.05.039
    [6] Rassili A. A review on thixoforming of high melting point alloys. Solid State Phenomena, 2016, 256: 228 doi: 10.4028/www.scientific.net/SSP.256.228
    [7] Jorstad J L. SSM provides important advantages; So, why has SSM failed to achieve greater market share? Solid State Phenomena, 2014, 217-218: 481 doi: 10.4028/www.scientific.net/SSP.217-218.481
    [8] Gu G C, Pesci P, Becker E, et al. In situ microstructure observation of steel grades in the Semi-Solid state for thixoforging process by using confoncal laser scanning microscopy. Solid State Phenomena, 2014, 217-218: 15 doi: 10.4028/www.scientific.net/SSP.217-218.15
    [9] Chen C P, Tsao C Y A. Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior. Acta Mater, 1997, 45(5): 1955
    [10] Chen Z G, Fang L, Wu J W, et al. Microstructure evolution of an extruded high silicon semi-solid state aluminum alloys during reheating. Mater Rev, 2019, 33(6): 1006 doi: 10.11896/cldb.201906017

    陳志國, 方亮, 吳吉文, 等. 半固態擠壓高硅鋁合金二次加熱的微觀組織演變. 材料導報, 2019, 33(6):1006 doi: 10.11896/cldb.201906017
    [11] Meng Y, Chen Q, Sugiyama S, et al. Effects of reheating and subsequent rapid cooling on microstructural evolution and semisolid forming behaviors of extruded Mg–8.20Gd–4.48Y–3.34Zn–0.36Zr alloy. J Mater Process Technol, 2017, 247: 192 doi: 10.1016/j.jmatprotec.2017.04.001
    [12] Zhang J Y, Li Y D, Li M, et al. Microstructure characteristic and behavior of secondary solidification of 2024 alloy//Proceedings of 2017 China Foundry Activity. Suzhou, 2017: 1

    張繼淵, 李元東, 李明, 等. 2024合金二次凝固組織及行為研究//2017中國鑄造活動周論文集. 蘇州, 2017: 1
    [13] Wang C L, Wu G H, Sun M, et al. Formation of non-dendritic microstructures in preparation of semi-solid Mg-RE alloys slurries: Roles of RE content and cooling rate. J Mater Process Technol, 2020, 279: 116545 doi: 10.1016/j.jmatprotec.2019.116545
    [14] Jiang J F, Xiao G F, Wang Y, et al. High temperature deformation behavior and microstructure evolution of wrought nickel-based superalloy GH4037 in solid and semi-solid states. Trans Nonferrous Met Soc China, 2020, 30(3): 710 doi: 10.1016/S1003-6326(20)65248-7
    [15] Wang Y J, Song R B, Li Y P. Microstructural evolution and mechanical properties of 9Cr18 steel after thixoforging and heat treatment. Mater Charact, 2017, 127: 64 doi: 10.1016/j.matchar.2017.02.009
    [16] Guan R G, Shen Y F, Zhao Z Y, et al. Nanoscale precipitates strengthened lanthanum-bearing Mg–3Sn–1Mn alloys through continuous rheo-rolling. Sci Rep, 2016, 6: 23154 doi: 10.1038/srep23154
    [17] Liu Z Y, Mao W M, Wang W P, et al. Microstructure evolution of the A380 aluminum alloy semi-solid slurry prepared by serpentine channel. Chin J Eng, 2016, 38(2): 263

    劉志勇, 毛衛民, 王偉番, 等. 蛇形通道制備半固態A380鋁合金漿料組織的演變. 工程科學學報, 2016, 38(2):263
    [18] Kirkwood D H, Suéry M, Kapranos P, et al. Semi-Solid Processing of Alloys//Springer Series in Materials Science. Springer-Verlag Berlin Heidelberg, 2010
    [19] Wang Y J, Song R B, Song R F. Deformation behavior and microstructure evolution of 9Cr18 alloy during semi-solid compression. Acta Metall Sin, 2018, 54(1): 39 doi: 10.11900/0412.1961.2017.00209

    王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固態觸變壓縮變形行為及組織演變. 金屬學報, 2018, 54(1):39 doi: 10.11900/0412.1961.2017.00209
    [20] Kolahdooz A, Dehkordi S A. Effects of important parameters in the production of Al-A356 alloy by semi-solid forming process. J Mater Res Technol, 2019, 8(1): 189 doi: 10.1016/j.jmrt.2017.11.005
    [21] Koeune R, Ponthot J P. A one phase thermomechanical model for the numerical simulation of semi-solid material behavior. Application to thixoforming. Int J Plast, 2014, 58: 120
    [22] Gu G C, Pesci R, Langlois L, et al. Microstructure investigation and flow behavior during thixoextrusion of M2 steel grade. J Mater Process Technol, 2015, 216: 178 doi: 10.1016/j.jmatprotec.2014.09.009
    [23] Kareh K M, O'Sullivan C, Nagira T, et al. Dilatancy in semi-solid steels at high solid fraction. Acta Mater, 2017, 125: 187 doi: 10.1016/j.actamat.2016.11.066
    [24] Jiang J F, Wang Y, Nie X, et al. Microstructure evolution of semisolid billet of nano-sized SiCp/7075 aluminum matrix composite during partial remelting process. Mater Des, 2016, 96: 36 doi: 10.1016/j.matdes.2016.02.021
    [25] Becker E, Bigot R, Langlois L, et al. Metallurgical and mechanical analysis from thixoforging steel shape. Int J Mater Form, 2008(Suppl 1): 977
    [26] Qiu J M, Xiao H, Wang J, et al. Microstructure evolution of semi-solid ZCuSn10 copper alloy during reheating process. Chin J Mater Res, 2015, 29(4): 277 doi: 10.11901/1005.3093.2014.542

    邱集明, 肖寒, 王佳, 等. 半固態ZCuSn10銅合金二次加熱組織的演化. 材料研究學報, 2015, 29(4):277 doi: 10.11901/1005.3093.2014.542
    [27] Roca A S, Fals H D C, Pedron J A, et al. Thixoformability of hypoeutectic gray cast iron. J Mater Process Technol, 2012, 212(6): 1225
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  1427
  • HTML全文瀏覽量:  696
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-12
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回