<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

含氟連鑄保護渣黏度檢測與預測模型

趙忠宇 趙俊學 譚澤馨 屈波樵 崔雅茹

趙忠宇, 趙俊學, 譚澤馨, 屈波樵, 崔雅茹. 含氟連鑄保護渣黏度檢測與預測模型[J]. 工程科學學報, 2021, 43(4): 529-536. doi: 10.13374/j.issn2095-9389.2020.05.03.002
引用本文: 趙忠宇, 趙俊學, 譚澤馨, 屈波樵, 崔雅茹. 含氟連鑄保護渣黏度檢測與預測模型[J]. 工程科學學報, 2021, 43(4): 529-536. doi: 10.13374/j.issn2095-9389.2020.05.03.002
ZHAO Zhong-yu, ZHAO Jun-xue, TAN Ze-xin, QU Bo-qiao, CUI Ya-ru. Viscosity detection and the estimation model of fluorine-containing mold flux for continuous casting[J]. Chinese Journal of Engineering, 2021, 43(4): 529-536. doi: 10.13374/j.issn2095-9389.2020.05.03.002
Citation: ZHAO Zhong-yu, ZHAO Jun-xue, TAN Ze-xin, QU Bo-qiao, CUI Ya-ru. Viscosity detection and the estimation model of fluorine-containing mold flux for continuous casting[J]. Chinese Journal of Engineering, 2021, 43(4): 529-536. doi: 10.13374/j.issn2095-9389.2020.05.03.002

含氟連鑄保護渣黏度檢測與預測模型

doi: 10.13374/j.issn2095-9389.2020.05.03.002
基金項目: 國家自然科學基金資助項目(51674185,51674186)
詳細信息
    通訊作者:

    E-mail:zhaojunxue1962@126.com

  • 中圖分類號: F407.3

Viscosity detection and the estimation model of fluorine-containing mold flux for continuous casting

More Information
  • 摘要: 采用旋轉柱體法對不同類型的含氟連鑄保護渣黏度進行檢測,并基于Arrhenius方程通過非線性回歸分析建立了新的黏度預測模型,分析了組分變化對黏度的影響。結合模型計算和實驗檢測,建立了CaF2?Na2O?Al2O3?CaO?SiO2?MgO渣系的等黏度圖。結果表明,與傳統的含氟連鑄保護渣黏度預測模型相比,該模型計算的偏差在10%以內,當渣中w(CaF2)超過20%時,偏差逐漸增大,主要由于氟化物揮發造成爐渣成分變化,最終黏度實測值與爐渣初始成分不符,造成模型無法對黏度有效預測。此外,研究發現,CaF2的增加能顯著降低爐渣黏度,而Al2O3和Na2O對黏度的影響受CaF2含量的限制。當w(CaF2)>17%,爐渣黏度隨Al2O3含量增加而減小,當w(CaF2)<17%,Al2O3的增加使爐渣黏度顯著增大;當w(CaF2)>11.5%,爐渣黏度隨Na2O含量增加顯著下降,當w(CaF2)<11.5%,Na2O含量變化對黏度的影響并不明顯。此外,該等黏度圖表明低黏度區w(CaF2)接近14%。通過調整等黏度圖中各組分比例,可以改善保護渣的黏度和流動性,供鋼鐵工業應用。

     

  • 圖  1  黏度?溫度線性分析

    Figure  1.  Linear analysis of lnη to 1/T

    圖  2  黏度參數擬合數值變化。(a)lnA;(b)B

    Figure  2.  Viscosity parameter fitting value: (a) lnA; (b) B

    圖  3  含氟保護渣黏度預測值與檢測值對比。(a)Riboud模型;(b)Iida模型;(c)Mills模型;(d)本研究模型

    Figure  3.  Estimated and measured viscosities of fluorine-containing mold flux: (a) Riboud model; (b) Iida model; (c) Mills model; (d) studied model

    圖  4  CaF2?CaO?SiO2三元渣黏度預測值與檢測值對比。(a)Mills模型;(b)本研究模型

    Figure  4.  Estimated and measured viscosities of CaF2?CaO?SiO2: (a) Mills model; (b) studied model

    圖  5  CaF2,Na2O和Al2O3成分變化對保護渣黏度影響

    Figure  5.  Effect of CaF2, Na2O, and Al2O3 on the viscosity of mold flux

    圖  6  CaF2?Na2O?Al2O3?CaO?SiO2?MgO等黏度圖(M=0.9, w(MgO)=6.5%,1500 ℃)

    Figure  6.  CaF2–Na2O–Al2O3–CaO–SiO2–MgO iso-viscosity diagram (M=0.9, w(MgO)=6.5%, 1500 °C)

    表  1  含氟保護渣成分范圍(質量分數)

    Table  1.   Composition of fluorine-containing mold flux %

    CaF2MNa2OAl2O3MgO
    4–200.6–1.23–122–120–12
    下載: 導出CSV

    表  2  連鑄保護渣組成(質量分數)

    Table  2.   Components of mold fluxes for continuous casting %

    SlagCaOSiO2Al2O3CaF2Na2OMgOMSlagCaOSiO2Al2O3CaF2Na2OMgOM
    C124.622.311.21911.711.21.1C2433.737.47.212.43.16.20.9
    C234.030.910.517.84.72.11.1C2527.630.77.6138.1130.9
    C335.132.011.27.811.72.21.1C2633.837.57.6138.100.9
    C435.131.910.57.34.710.51.1C2730.734.17.6138.16.50.9
    C532.829.84.51911.72.21.1M123.438.36.212.918.80.50.6
    C632.929.94.217.84.710.51.1M217.540.05.214.521.51.30.4
    C733.930.94.57.811.711.21.1M320.134.44.814.326.400.6
    C842.838.94.27.34.72.11.1M419.436.618.017.28.800.5
    C923.032.911.21911.72.20.7M532.631.25.38.022.901.0
    C1023.333.210.517.84.710.50.7M622.542.210.410.713.01.30.5
    C1123.934.211.27.811.711.20.7M721.533.23.715.425.70.50.6
    C1231.044.410.57.34.72.10.7M822.738.66.313.518.900.6
    C1322.131.54.51911.711.20.7M922.335.08.916.517.300.6
    C1429.341.94.217.84.72.10.7M1020.434.04.317.923.400.6
    C1530.443.44.57.811.72.20.7M1113.832.03.520.227.13.50.4
    C1630.243.14.27.34.710.50.7P139390138.41.61.0
    C1735.329.57.6138.16.51.2P239390133.66.41.0
    C1824.340.57.6138.16.50.6P341410133.61.61.0
    C1928.131.313138.16.50.9P43939078.46.41.0
    C2033.336.92.2138.16.50.9P54242078.41.61.0
    C2126.629.67.621.68.16.50.9P64242073.66.41.0
    C2234.838.77.64.38.16.50.9P74444073.61.61.0
    C2327.530.58.013.613.66.80.9P830420138.46.40.7
    P93448133.61.60.7S133.553.013.50.6
    P10344115640.85S232.947.819.30.7
    P113541101040.85S333.146.920.00.7
    P12394510600.85S430.837.831.40.8
    P13354110680.85S527.030.442.60.9
    P14374310640.85S633.039.627.40.8
    P15423810641.1S733.238.628.20.9
    下載: 導出CSV

    表  3  黏度參數分析

    Table  3.   Viscosity controlling parameters

    SlaglnABSlaglnABSlaglnAB
    C1?12.116616750.76C10?11.166315523.76C19?11.641916899.20
    C2?11.152115331.25C11?11.406916399.51C20?10.573614696.67
    C3?11.482716323.80C12?11.904519019.28C21?9.2606311473.14
    C4?11.233816106.31C13?10.711413670.59C22?11.338818048.45
    C5?10.966613904.19C14?11.189615932.56C23?10.481413697.65
    C6?11.180614859.89C15?11.439117000.89C24?17.236225991.79
    C7?11.352215328.48C16?11.131216491.46C25?10.581214320.87
    C8?11.363516421.96C17?14.961021103.44C26?13.068218316.60
    C9?10.999214722.03C18?12.897219711.71C27?10.782813602.93
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang X H. Metallurgy of Iron and Steel: Steelmaking. Beijing: Higher Education Press, 2007

    王新華. 鋼鐵冶金: 煉鋼學. 北京: 高等教育出版社, 2007
    [2] Anisimov K N, Longinov A M, Toptygin A M, et al. Investigation of the mold powder film structure and its influence on the developed surface in continuous casting. Steel Transl, 2016, 46(7): 489 doi: 10.3103/S0967091216070032
    [3] Viswanathan N N, Fatemeh S, Du S C, et al. Estimation of escape rate of volatile components SiF4 and HF from slags containing CaF2 during viscosity measurement. Steel Res, 1999, 70(2): 53 doi: 10.1002/srin.199905600
    [4] Cho J W, Yoo S, Park M S, et al. Improvement of castability and surface quality of continuously cast TWIP slabs by molten mold flux feeding technology. Metall Mater Trans B, 2017, 48(1): 187 doi: 10.1007/s11663-016-0818-3
    [5] Susa M, Sakamaki T, Kojima R. Chemical states of fluorine in CaF2?CaO?SiO2 and NaF?Na2O?SiO2 glassy slags from the perspective of electronic polarisability. Ironmaking Steelmaking, 2005, 32(1): 13 doi: 10.1179/174328105X15841
    [6] Zhao J X, Zhao Z Y, Shang N, et al. Analysis on influence of fluoride in mold powder of continuous casting. Iron Steel, 2018, 53(10): 8

    趙俊學, 趙忠宇, 尚南, 等. 連鑄保護渣中氟化物作用及影響分析. 鋼鐵, 2018, 53(10):8
    [7] Li J Y, Zhang L, Tan Y, et al. Research of boron removal from polysilicon using CaO–Al2O3–SiO2–CaF2 slags. Vacuum, 2014, 103: 33 doi: 10.1016/j.vacuum.2013.12.002
    [8] Wang Q, He S P, Li Y G, et al. Status and developing needs of mould fluxes for continuous casting in China. Continuous Cast, 2014(5): 1

    王謙, 何生平, 李玉剛, 等. 中國連鑄保護渣技術現狀及發展需求. 連鑄, 2014(5):1
    [9] Arefpour A R, Monshi A, Saidi A, et al. Effect of CaF2 and MnO on mold powder viscosity and solidification during high-speed continuous casting. Refract Ind Ceram, 2013, 54(3): 203 doi: 10.1007/s11148-013-9575-x
    [10] Persson M, Seetharaman S, Seetharaman S. Kinetic studies of fluoride evaporation from slags. ISIJ Int, 2007, 47(12): 1711 doi: 10.2355/isijinternational.47.1711
    [11] Haverkamp R G. An XPS study of the fluorination of carbon anodes in molten NaF–AlF3–CaF2. J Mater Sci, 2012, 47(3): 1262 doi: 10.1007/s10853-011-5772-5
    [12] Shi C B, Cho J W, Zheng D L, et al. Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater, 2016, 23(6): 627 doi: 10.1007/s12613-016-1275-3
    [13] Park H S, Kim H, Sohn I. Influence of CaF2 and Li2O on the viscous behavior of calcium silicate melts containing 12 wt pct Na2O. Metall Mater Trans B, 2011, 42(2): 324 doi: 10.1007/s11663-011-9474-9
    [14] Tong Z F, Qiao J L, Jiang X Y. Kinetics of Na2O evaporation from CaO?Al2O3?SiO2?MgO?TiO2?Na2O slags. Ironmaking Steelmaking, 2017, 44(4): 237 doi: 10.1080/03019233.2016.1210354
    [15] Park J Y, Ryu J W, Sohn I. In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope. Metall Mater Trans B, 2014, 45(4): 1186 doi: 10.1007/s11663-014-0087-y
    [16] Shin S H, Cho J W, Kim S H. Structural investigations of CaO–CaF2–SiO2–Si3N4 based glasses by Raman spectroscopy and XPS considering its application to continuous casting of steels. Mater Des, 2015, 76: 1 doi: 10.1016/j.matdes.2015.03.035
    [17] Guo J M, Peng K W, Yi L, et al. Study on properties of Al2O3?CaO?SiO2?CaF2?MgO slag system. Appl Mech Mater, 2014, 513-517: 24 doi: 10.4028/www.scientific.net/AMM.513-517.24
    [18] Zhao J X, Ge B L, Cui Y R, et al. High temperature properties measurement of slag with higher volatile content. Ind Heat, 2016, 45(2): 12

    趙俊學, 葛蓓蕾, 崔雅茹, 等. 含易揮發組元爐渣的高溫性能檢測. 工業加熱, 2016, 45(2):12
    [19] Han X L, Li P. Effect of alkalinity, F’s content and Na2O content in steel slag film crystals. J Hebei United Univ Nat Sci Ed, 2014, 36(1): 18

    韓秀麗, 李沛. 堿度值R、F-含量和Na2O含量對中碳鋼保護渣渣膜結晶體的影響規律. 河北聯合大學學報(自然科學版), 2014, 36(1):18
    [20] Zhao X J, Wen H Q, Zhang J Y. The phase properties of mold flux in continuous casting mold flux. Mod Metall, 2019, 47(3): 46

    趙顯久, 溫宏權, 張捷宇. 連鑄結晶器保護渣物相性能研究. 現代冶金, 2019, 47(3):46
    [21] Riboud P V, Roux Y, Lucas L D, et al. Improvement of continuous casting powders. Fachber Hiittenprax Metallweiterverarb, 1981(19): 859
    [22] Iida T, Sakai H, Kita Y, et al. An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ Int, 2000, 40(Suppl): S110 doi: 10.2355/isijinternational.40.Suppl_S110
    [23] Mills K C, Fox A B, Li Z, et al. Performance and properties of mould fluxes. Ironmaking Steelmaking, 2005, 32(1): 26 doi: 10.1179/174328105X15788
    [24] Liu Z X, Wang L. Experimental Design and Data Processing. 2nd Ed. Beijing: Chemical Industry Press, 2015

    劉振學, 王力. 實驗設計與數據處理. 2版. 北京: 化學工業出版社, 2015
    [25] Mills K C, Sridhar S. Viscosities of ironmaking and steelmaking slags. Ironmaking Steelmaking, 1999, 26(4): 262 doi: 10.1179/030192399677121
    [26] Pan Z S, Wang Q, He S P, et al. Effect of viscosity components on mould fluxes. Spec Steel Technol, 2010, 16(2): 18

    潘志勝, 王謙, 何生平, 等. 連鑄保護渣組分對黏度的影響. 特鋼技術, 2010, 16(2):18
    [27] Mills K C, Fox A B. The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ Int, 2003, 43(10): 1479 doi: 10.2355/isijinternational.43.1479
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數:  1457
  • HTML全文瀏覽量:  656
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-05-03
  • 刊出日期:  2021-04-26

目錄

    /

    返回文章
    返回