<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

常規鹵化物和高分子材料抑制尾礦庫揚塵的試驗

趙筠康 魏作安 楊永浩 路停 王文松 李世龍

趙筠康, 魏作安, 楊永浩, 路停, 王文松, 李世龍. 常規鹵化物和高分子材料抑制尾礦庫揚塵的試驗[J]. 工程科學學報, 2021, 43(4): 486-494. doi: 10.13374/j.issn2095-9389.2020.04.23.002
引用本文: 趙筠康, 魏作安, 楊永浩, 路停, 王文松, 李世龍. 常規鹵化物和高分子材料抑制尾礦庫揚塵的試驗[J]. 工程科學學報, 2021, 43(4): 486-494. doi: 10.13374/j.issn2095-9389.2020.04.23.002
ZHAO Jun-kang, WEI Zuo-an, YANG Yong-hao, LU Ting, WANG Wen-song, LI Shi-Long. Control of dust from tailings pond using conventional halides and polymer materials[J]. Chinese Journal of Engineering, 2021, 43(4): 486-494. doi: 10.13374/j.issn2095-9389.2020.04.23.002
Citation: ZHAO Jun-kang, WEI Zuo-an, YANG Yong-hao, LU Ting, WANG Wen-song, LI Shi-Long. Control of dust from tailings pond using conventional halides and polymer materials[J]. Chinese Journal of Engineering, 2021, 43(4): 486-494. doi: 10.13374/j.issn2095-9389.2020.04.23.002

常規鹵化物和高分子材料抑制尾礦庫揚塵的試驗

doi: 10.13374/j.issn2095-9389.2020.04.23.002
基金項目: 國家重點研發計劃資助項目(2017YFC0804609);重慶市自然科學基金資助項目(cstc2019jcyj-bshX0022);重慶市博士后科研項目特別資助(XmT2018017)
詳細信息
    通訊作者:

    E-mail: weiza@cqu.edu.cn

  • 中圖分類號: TD862

Control of dust from tailings pond using conventional halides and polymer materials

More Information
  • 摘要: 選取溶液質量濃度、溶液噴灑量以及外部風速作為變量,通過室內試驗考察了常規鹵化物和高分子材料對揚塵控制的效果。以抗風蝕能力和結殼抗破壞能力為響應變量。結果表明,隨著抑塵劑濃度的增加和噴灑量的增加,結殼的抗風蝕性和抗破壞性可以得到提高。在鹵化物溶液中,CaCl2的抑塵性能最好。在風速為7.5 m·s?1的條件下,CaCl2噴灑量為4.5 L·m?2,且其質量濃度為50 g·L?1時,尾礦質量損失量為0.75 g·m?2·min?1,貫入阻力為466 kPa。在高分子材料中,聚丙烯酰胺的抑塵效果最好。在風速為7.5 m·s?1的條件下,聚丙烯酰胺噴灑量為4.5 L·m?2,且其質量濃度為0.5 g·L?1時,尾礦質量損失量為0.30 g·m?2·min?1,貫入阻力為248 kPa。抑塵劑的選取可根據當地年均風速確定,年均風速較大時,可選擇聚丙烯酰胺作為尾礦庫抑塵劑,反之則可選擇CaCl2為尾礦庫抑塵劑。

     

  • 圖  1  銅尾礦粒徑分布曲線

    Figure  1.  Particle size distribution curve of copper tailings

    圖  2  抗風性能試驗圖

    Figure  2.  Schematic of blow test

    圖  3  5個貫入測試點的位置

    Figure  3.  Photograph of the locations of the five penetrating test points in the tailings samples

    圖  4  鹵化物抑塵劑在不同風速下的抗風蝕性能試驗結果(噴灑量為1.5 L·m?2)。(a)風速為4.5 m·s?1;(b)風速為7.5 m·s?1;(c)風速為10 m·s?1

    Figure  4.  Test result of wind erosion resistance of halide sprayed tailings (spraying amount of 1.5 L·m?2): (a) wind speed of 4.5 m·s?1; (b) wind speed of 7.5 m·s?1; (c) wind speed of 10 m·s?1

    圖  5  鹵化物抑塵劑在不同風速下的抗風蝕性能試驗結果(噴灑量為4.5 L·m?2)。(a)風速為4.5 m·s?1;(b)風速為7.5 m·s?1;(c)風速為10 m·s?1

    Figure  5.  Test result of wind erosion resistance of halide sprayed tailings (spraying amount of 4.5 L·m?2): (a) wind speed of 4.5 m·s?1; (b) wind speed of 7.5 m·s?1; (c) wind speed of 10 m·s?1

    圖  6  高分子抑塵劑在不同風速下的抗風蝕性能試驗結果(噴灑量為1.5 L·m?2)。(a)風速為4.5 m·s?1;(b)風速為7.5 m·s?1;(c)風速為10 m·s?1

    Figure  6.  Test result of wind erosion resistance of polymer sprayed tailings (spraying amount of 1.5 L·m?2): (a) wind speed of 4.5 m·s?1; (b) wind speed of 7.5 m·s?1; (c) wind speed of 10 m·s?1

    圖  7  高分子抑塵劑在不同風速下的抗風蝕性能試驗結果(噴灑量為4.5 L·m?2)。(a)風速為4.5 m·s?1;(b)風速為7.5 m·s?1;(c)風速為10 m·s?1

    Figure  7.  Test result of wind erosion resistance of polymer sprayed tailings (spraying amount of 4.5 L·m?2): (a) wind speed of 4.5 m·s?1; (b) wind speed of 7.5 m·s?1; (c) wind speed of 10 m·s?1

    圖  8  噴灑3種鹵化物抑塵劑溶液后的表面貫入阻力的測試結果。(a)噴灑量為1.5 L·m?2;(b)噴灑量為3.0 L·m?2;(c)噴灑量為4.5 L·m?2

    Figure  8.  Test results of surface penetration resistance after spraying three halide dust-inhibitor solutions: (a) spraying amount of 1.5 L·m?2; (b) spraying amount of 3.0 L·m?2; (c) spraying amount of 4.5 L·m?2

    圖  9  噴灑3種高分子抑塵劑溶液后的表面貫入阻力的測試結果。(a)噴灑量為1.5 L·m?2;(b)噴灑量為3.0 L·m?2;(c)噴灑量為4.5 L·m?2

    Figure  9.  Test results of surface penetration resistance after spraying with three kinds of polymer dust-inhibitor solution: (a) spraying amount of 1.5 L·m?2; (b) spraying amount of 3.0 L·m?2; (c) spraying amount of 4.5 L·m?2

    表  1  銅尾礦的化學組成

    Table  1.   Chemical composition of copper tailings %

    Chemical elementSiCaFeAlNaMgPSTiOther
    Mass fraction46.8416.8413.329.813.792.562.061.871.021.89
    下載: 導出CSV

    表  2  試驗風速等級

    Table  2.   Test wind levels

    Test wind levelsWind speed / (m·s?1)Wind class
    13.4–5.43
    25.5–7.94
    38.0–10.75
    下載: 導出CSV

    表  3  CaCl2與聚丙烯酰胺試樣損失量對比

    Table  3.   Comparison of losses of CaCl2 and polyacrylamide samples

    Reagent
    name
    Concentration /
    (g·L?1)
    Spraying amount /
    (L·m?2)
    Tailings loss at wind speed
    of 4.5 m·s?1/
    (g·m?2·min ?1)
    Tailings loss at wind speed
    of 7.5 m·s?1 /
    (g·m?2·min ?1)
    Tailings loss at wind speed
    of 10.0 m·s?1/
    (g·m?2·min ?1)
    Water04.512.695.33
    CaCl2504.50.510.710.90
    Polyacrylamide0.54.50.190.300.79
    下載: 導出CSV

    表  4  CaCl2與聚丙烯酰胺試樣貫入阻力對比

    Table  4.   Comparison of penetration resistances of CaCl2 and polyacrylamide samples

    Reagent nameConcentration /
    (g·L?1)
    Spraying amount /
    (L·m?2)
    Penetration
    resistance / kPa
    Water04.5250
    CaCl2504.5466
    Polyacrylamide0.54.5248
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang K, Yang P, Hudson-Edwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526

    王昆, 楊鵬, Karen Hudson-Edwards, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526
    [2] Chen D Z. Analysis and research of stacking process and comprehensive utilization of solid mine-tailings. Hunan Nonferrous Met, 2016, 32(4): 5 doi: 10.3969/j.issn.1003-5540.2016.04.002

    陳典助. 固體礦山尾礦堆存技術與綜合利用分析與研究. 湖南有色金屬, 2016, 32(4):5 doi: 10.3969/j.issn.1003-5540.2016.04.002
    [3] Yuan Y Q. Analysis and suggestions on current safety status of domestic tailings ponds. Nonferrous Met Eng Res, 2010, 31(1): 32 doi: 10.3969/j.issn.1004-4345.2010.01.011

    袁永強. 我國尾礦庫安全現狀分析及建議. 有色冶金設計與研究, 2010, 31(1):32 doi: 10.3969/j.issn.1004-4345.2010.01.011
    [4] Na Q. Test study on the dust preventives for the dry sands of tailings reservoir. Met Mine, 2002(6): 45 doi: 10.3321/j.issn:1001-1250.2002.06.017

    那瓊. 尾礦庫干灘防塵抑塵劑的試驗研究. 金屬礦山, 2002(6):45 doi: 10.3321/j.issn:1001-1250.2002.06.017
    [5] Cai S J, Yang P. Tailings problems and tailings utilization and treatments in the metal mines. Eng Sci, 2000, 2(4): 89 doi: 10.3969/j.issn.1009-1742.2000.04.017

    蔡嗣經, 楊鵬. 金屬礦山尾礦問題及其綜合利用與治理. 中國工程科學, 2000, 2(4):89 doi: 10.3969/j.issn.1009-1742.2000.04.017
    [6] Zhou H L. Problems to be concerned in environmental impact assessment of tailings reservoir. Min Eng, 2013, 11(5): 65 doi: 10.3969/j.issn.1671-8550.2013.05.026

    周海林. 尾礦庫環境影響評價中應注意的問題. 礦業工程, 2013, 11(5):65 doi: 10.3969/j.issn.1671-8550.2013.05.026
    [7] Gao Y, Lan D M, Huang X Q, et al. Effects of tailings pond on vegetation in Baiyinnuoer lead-zinc mine. J Inner Mongolia Agric Univ Nat Sci, 2016, 37(4): 60

    高原, 藍登明, 黃曉強, 等. 白音諾爾鉛鋅礦尾礦庫揚塵風積物對植被生長的影響. 內蒙古農業大學學報(自然科學版), 2016, 37(4):60
    [8] Zhang G B. Tailings ponds to make soil. Nonferrous Met (Mine Sect), 2002, 54(4): 40

    張國斌. 尾礦庫復土造田. 有色金屬(礦山部分), 2002, 54(4):40
    [9] Jiao Z Q. Study on comprehensive prevention and treatment technique for secondary dust escape in fly ash storage areas of thermal of thermal power plants. Hous Mater Appl, 2000, 28(1): 23

    焦志強. 火電廠灰場二次揚塵綜合防治技術研究. 房材與應用, 2000, 28(1):23
    [10] Li Y Q, Zhao B W, Dong B. Research progress of chemical dust suppression technology to control dust pollution from unorganized sources. Environ Sci Manage, 2019, 44(6): 76 doi: 10.3969/j.issn.1673-1212.2019.06.017

    李穎泉, 趙保衛, 董波. 化學抑塵技術治理無組織源揚塵污染研究進展. 環境科學與管理, 2019, 44(6):76 doi: 10.3969/j.issn.1673-1212.2019.06.017
    [11] Du C F, Du J H, Wang T. Cohesive dust suppressant used in tailings dams and its environmental adaptability. J Univ Sci Technol Beijing, 2009, 31(8): 951 doi: 10.3321/j.issn:1001-053X.2009.08.002

    杜翠鳳, 杜建華, 王婷. 黏結型尾礦庫抑塵劑及環境適應性. 北京科技大學學報, 2009, 31(8):951 doi: 10.3321/j.issn:1001-053X.2009.08.002
    [12] Wu C. Chemical Suppression Dust. Changsha: Central South University Press, 2003

    吳超. 化學抑塵. 長沙: 中南大學出版社, 2003
    [13] Ouyang Y J. Study on effect of surface tension of the inorganic saline solution. China Sci Technol Inform, 2009(22): 42 doi: 10.3969/j.issn.1001-8972.2009.22.017

    歐陽躍軍. 無機鹽溶液表面張力的影響研究. 中國科技信息, 2009(22):42 doi: 10.3969/j.issn.1001-8972.2009.22.017
    [14] Xu Y. Development of membrane-cover dust suppressor for earthwork. Guangzhou Chem Ind, 2019, 47(10): 59 doi: 10.3969/j.issn.1001-9677.2019.10.024

    許玥. 土方施工階段膜型揚塵抑制劑研制及其性能研究. 廣州化工, 2019, 47(10):59 doi: 10.3969/j.issn.1001-9677.2019.10.024
    [15] Liu M L. Brief review for effect of chloride on environment. Sichuan Environ, 1993, 12(3): 74

    劉明禮. 淺談氯化物對環境的影響. 四川環境, 1993, 12(3):74
    [16] Liu S Y, Zhang T, Cai G J, et al. Research progress of soil stabilization with lignin from bio-energy by-products. China J Highway Transport, 2014, 27(8): 1 doi: 10.3969/j.issn.1001-7372.2014.08.001

    劉松玉, 張濤, 蔡國軍, 等. 生物能源副產品木質素加固土體研究進展. 中國公路學報, 2014, 27(8):1 doi: 10.3969/j.issn.1001-7372.2014.08.001
    [17] Yang X X, Wen D J. Development on environmental influence of PVA. J Univ Sci Technol Suzhou Eng Technol, 2005, 18(1): 9

    楊曉雄, 聞荻江. 聚乙烯醇對環境影響的研究進展. 蘇州科技學院學報(工程技術版), 2005, 18(1):9
    [18] Cui H Y, Ren S M. Research status of applying polyacrylamide to control soil erosion. Sci Tech Inform Soil Water Conserv, 2005(2): 25

    崔海英, 任樹梅. 應用聚丙烯酰胺防治水土流失的研究現狀. 水土保持科技情報, 2005(2):25
    [19] Huang H, Shi B, Liu J, et al. Experimental study on the strength of soil modified by STW ecotypic soil stabilizer. J Disaster Prevent Mitigat Eng, 2008, 28(1): 87

    黃河, 施斌, 劉瑾, 等. STW型生態土壤穩定劑改性土強度試驗研究. 防災減災工程學報, 2008, 28(1):87
    [20] Liu J, Shi B, Jiang H T, et al. Experimental study on the water-stability property of clay aggregates stabilized by STW polymer soil stabilizer. Hydrogeol Eng Geol, 2009, 36(2): 77 doi: 10.3969/j.issn.1000-3665.2009.02.016

    劉瑾, 施斌, 姜洪濤, 等. STW型高分子土壤穩定劑改良粘性土團聚體水穩性實驗研究. 水文地質工程地質, 2009, 36(2):77 doi: 10.3969/j.issn.1000-3665.2009.02.016
    [21] Wang Y T, Yang K, Tang Z J, et al. The effectiveness of the consolidated desert surface by mixing of fly ash and polyacrylamide in wind erosion control. Water Air Soil Pollut, 2016, 227(12): 429
    [22] Wang Y M, Chen W W, Han W F. Microstudy on mechanism of sand fixation with SH. Rock Soil Mech, 2005, 26(4): 650 doi: 10.3969/j.issn.1000-7598.2005.04.031

    王銀梅, 諶文武, 韓文峰. SH固沙機理的微觀探討. 巖土力學, 2005, 26(4):650 doi: 10.3969/j.issn.1000-7598.2005.04.031
    [23] Wang Y M, Sun G P, Chen W W, et al. Strength characteristics of sand fixated by SH. Chin J Rock Mech Eng, 2003, 22(Suppl 2): 2883

    王銀梅, 孫冠平, 諶文武, 等. SH固沙劑固化沙體的強度特征. 巖石力學與工程學報, 2003, 22(增刊2): 2883
    [24] Teo J A, Ray C, El-Swaify S A. Screening of polymers on selected Hawaii soils for erosion reduction and particle settling. Hydrol Processes, 2006, 20(1): 109
    [25] Zhao Y, Mu X M, Wang F, et al. Impact of conservation tillage on soil wind erosion of farmland based on wind tunnel test. Res Soil Water Conserv, 2012, 19(3): 16

    趙云, 穆興民, 王飛, 等. 保護性耕作對農田土壤風蝕影響的室內風洞實驗研究. 水土保持研究, 2012, 19(3):16
    [26] Du L. Analysis of dust raising mechanism and dust suppression technology in highway engineering. Highways Autom Appl, 2019(6): 148 doi: 10.3969/j.issn.1671-2668.2019.06.038

    杜麗. 公路工程施工揚塵機理及抑塵技術分析. 公路與汽運, 2019(6):148 doi: 10.3969/j.issn.1671-2668.2019.06.038
    [27] Wu D. Polymer Type Chemical Dust Suppression Agent and Its Properties[Dissertation]. Tianjin: Hebei University of Technology, 2017

    吳丹. 聚合物型化學抑塵劑及其性能[學位論文]. 天津: 河北工業大學, 2017
    [28] Liu D, Ren S M, Yang P L. Influence of PAM to capability of anti-wind erosion of soil. Soil Water Conserv China, 2006(12): 33 doi: 10.3969/j.issn.1000-0941.2006.12.013

    劉東, 任樹梅, 楊培嶺. PAM對土壤抗風蝕能力的影響. 中國水土保持, 2006(12):33 doi: 10.3969/j.issn.1000-0941.2006.12.013
    [29] Dong Z, Li H L, Zuo H J, et al. Wind tunnel test on sand-preventing mechanism of soil coagulant sand-barrier. J Arid Land Resour Environ, 2004, 18(3): 154 doi: 10.3969/j.issn.1003-7578.2004.03.030

    董智, 李紅麗, 左合君, 等. 土壤凝結劑沙障防沙機理的風洞模擬實驗研究. 干旱區資源與環境, 2004, 18(3):154 doi: 10.3969/j.issn.1003-7578.2004.03.030
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  1945
  • HTML全文瀏覽量:  1112
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-23
  • 刊出日期:  2021-04-26

目錄

    /

    返回文章
    返回