Control of dust from tailings pond using conventional halides and polymer materials
-
摘要: 選取溶液質量濃度、溶液噴灑量以及外部風速作為變量,通過室內試驗考察了常規鹵化物和高分子材料對揚塵控制的效果。以抗風蝕能力和結殼抗破壞能力為響應變量。結果表明,隨著抑塵劑濃度的增加和噴灑量的增加,結殼的抗風蝕性和抗破壞性可以得到提高。在鹵化物溶液中,CaCl2的抑塵性能最好。在風速為7.5 m·s?1的條件下,CaCl2噴灑量為4.5 L·m?2,且其質量濃度為50 g·L?1時,尾礦質量損失量為0.75 g·m?2·min?1,貫入阻力為466 kPa。在高分子材料中,聚丙烯酰胺的抑塵效果最好。在風速為7.5 m·s?1的條件下,聚丙烯酰胺噴灑量為4.5 L·m?2,且其質量濃度為0.5 g·L?1時,尾礦質量損失量為0.30 g·m?2·min?1,貫入阻力為248 kPa。抑塵劑的選取可根據當地年均風速確定,年均風速較大時,可選擇聚丙烯酰胺作為尾礦庫抑塵劑,反之則可選擇CaCl2為尾礦庫抑塵劑。Abstract: Mine tailings, the byproducts of mineral processing, are special solid wastes generally classified as loose sandy silts or silty sands that are vulnerable to wind erosion, especially in arid and semiarid regions. Mine tailings also contain potentially toxic elements such as Cd, Cr, Mn, Ni, Zn, Pb, and As. Thus, fugitive dust from mine tailings is associated with a number of environmental and safety concerns. In recent years, dust control has become a hot topic in the environmental management of tailings storage facilities. Using the response variables of wind erosion resistance and penetration resistance, the experimental variables of the solution concentration, spray amount, and external air speed, laboratory tests were conducted to investigate the effects of conventional halides and polymer materials on dust control. The results indicate that the wind erosion resistance and penetration resistance of the crust can be improved with increase in the concentration of the dust-depressor and the amount of spray used. In the halide solution, CaCl2 exhibited the best dust control effect. When the wind speed is 7.5 m·s?1 and the spraying amount of CaCl2 is 4.5 L·m?2 at a concentration of 50 g·L?1, the loss quantity of tailings is 0.75 g·m?2·min?1 and the penetration resistance is 466 kPa. Among the polymer materials, polyacrylamide exhibits the best dust control effect. The loss quantity of tailings is 0.30 g·m?2·min?1 and the penetration resistance is 248 kPa when the wind speed is 7.5 m·s?1 and the spraying amount of polyacrylamide is 4.5 L·m?2 at a concentration of 0.5 g·L?1. This paper emphasizes that the selection of dust-depressor can be determined based on the local annual mean wind speed, whereby polyacrylamide should be selected as the dust suppressant for a tailings pond when the annual mean wind speed is high. Otherwise, CaCl2 should be selected as the dust-depressor for a tailings pond.
-
Key words:
- copper tailings /
- halides /
- polymer materials /
- wind erosion resistance /
- penetration resistance
-
圖 9 噴灑3種高分子抑塵劑溶液后的表面貫入阻力的測試結果。(a)噴灑量為1.5 L·m?2;(b)噴灑量為3.0 L·m?2;(c)噴灑量為4.5 L·m?2
Figure 9. Test results of surface penetration resistance after spraying with three kinds of polymer dust-inhibitor solution: (a) spraying amount of 1.5 L·m?2; (b) spraying amount of 3.0 L·m?2; (c) spraying amount of 4.5 L·m?2
表 1 銅尾礦的化學組成
Table 1. Chemical composition of copper tailings
% Chemical element Si Ca Fe Al Na Mg P S Ti Other Mass fraction 46.84 16.84 13.32 9.81 3.79 2.56 2.06 1.87 1.02 1.89 表 2 試驗風速等級
Table 2. Test wind levels
Test wind levels Wind speed / (m·s?1) Wind class 1 3.4–5.4 3 2 5.5–7.9 4 3 8.0–10.7 5 表 3 CaCl2與聚丙烯酰胺試樣損失量對比
Table 3. Comparison of losses of CaCl2 and polyacrylamide samples
Reagent
nameConcentration /
(g·L?1)Spraying amount /
(L·m?2)Tailings loss at wind speed
of 4.5 m·s?1/
(g·m?2·min ?1)Tailings loss at wind speed
of 7.5 m·s?1 /
(g·m?2·min ?1)Tailings loss at wind speed
of 10.0 m·s?1/
(g·m?2·min ?1)Water 0 4.5 1 2.69 5.33 CaCl2 50 4.5 0.51 0.71 0.90 Polyacrylamide 0.5 4.5 0.19 0.30 0.79 表 4 CaCl2與聚丙烯酰胺試樣貫入阻力對比
Table 4. Comparison of penetration resistances of CaCl2 and polyacrylamide samples
Reagent name Concentration /
(g·L?1)Spraying amount /
(L·m?2)Penetration
resistance / kPaWater 0 4.5 250 CaCl2 50 4.5 466 Polyacrylamide 0.5 4.5 248 259luxu-164 -
參考文獻
[1] Wang K, Yang P, Hudson-Edwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526王昆, 楊鵬, Karen Hudson-Edwards, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526 [2] Chen D Z. Analysis and research of stacking process and comprehensive utilization of solid mine-tailings. Hunan Nonferrous Met, 2016, 32(4): 5 doi: 10.3969/j.issn.1003-5540.2016.04.002陳典助. 固體礦山尾礦堆存技術與綜合利用分析與研究. 湖南有色金屬, 2016, 32(4):5 doi: 10.3969/j.issn.1003-5540.2016.04.002 [3] Yuan Y Q. Analysis and suggestions on current safety status of domestic tailings ponds. Nonferrous Met Eng Res, 2010, 31(1): 32 doi: 10.3969/j.issn.1004-4345.2010.01.011袁永強. 我國尾礦庫安全現狀分析及建議. 有色冶金設計與研究, 2010, 31(1):32 doi: 10.3969/j.issn.1004-4345.2010.01.011 [4] Na Q. Test study on the dust preventives for the dry sands of tailings reservoir. Met Mine, 2002(6): 45 doi: 10.3321/j.issn:1001-1250.2002.06.017那瓊. 尾礦庫干灘防塵抑塵劑的試驗研究. 金屬礦山, 2002(6):45 doi: 10.3321/j.issn:1001-1250.2002.06.017 [5] Cai S J, Yang P. Tailings problems and tailings utilization and treatments in the metal mines. Eng Sci, 2000, 2(4): 89 doi: 10.3969/j.issn.1009-1742.2000.04.017蔡嗣經, 楊鵬. 金屬礦山尾礦問題及其綜合利用與治理. 中國工程科學, 2000, 2(4):89 doi: 10.3969/j.issn.1009-1742.2000.04.017 [6] Zhou H L. Problems to be concerned in environmental impact assessment of tailings reservoir. Min Eng, 2013, 11(5): 65 doi: 10.3969/j.issn.1671-8550.2013.05.026周海林. 尾礦庫環境影響評價中應注意的問題. 礦業工程, 2013, 11(5):65 doi: 10.3969/j.issn.1671-8550.2013.05.026 [7] Gao Y, Lan D M, Huang X Q, et al. Effects of tailings pond on vegetation in Baiyinnuoer lead-zinc mine. J Inner Mongolia Agric Univ Nat Sci, 2016, 37(4): 60高原, 藍登明, 黃曉強, 等. 白音諾爾鉛鋅礦尾礦庫揚塵風積物對植被生長的影響. 內蒙古農業大學學報(自然科學版), 2016, 37(4):60 [8] Zhang G B. Tailings ponds to make soil. Nonferrous Met (Mine Sect) , 2002, 54(4): 40張國斌. 尾礦庫復土造田. 有色金屬(礦山部分), 2002, 54(4):40 [9] Jiao Z Q. Study on comprehensive prevention and treatment technique for secondary dust escape in fly ash storage areas of thermal of thermal power plants. Hous Mater Appl, 2000, 28(1): 23焦志強. 火電廠灰場二次揚塵綜合防治技術研究. 房材與應用, 2000, 28(1):23 [10] Li Y Q, Zhao B W, Dong B. Research progress of chemical dust suppression technology to control dust pollution from unorganized sources. Environ Sci Manage, 2019, 44(6): 76 doi: 10.3969/j.issn.1673-1212.2019.06.017李穎泉, 趙保衛, 董波. 化學抑塵技術治理無組織源揚塵污染研究進展. 環境科學與管理, 2019, 44(6):76 doi: 10.3969/j.issn.1673-1212.2019.06.017 [11] Du C F, Du J H, Wang T. Cohesive dust suppressant used in tailings dams and its environmental adaptability. J Univ Sci Technol Beijing, 2009, 31(8): 951 doi: 10.3321/j.issn:1001-053X.2009.08.002杜翠鳳, 杜建華, 王婷. 黏結型尾礦庫抑塵劑及環境適應性. 北京科技大學學報, 2009, 31(8):951 doi: 10.3321/j.issn:1001-053X.2009.08.002 [12] Wu C. Chemical Suppression Dust. Changsha: Central South University Press, 2003吳超. 化學抑塵. 長沙: 中南大學出版社, 2003 [13] Ouyang Y J. Study on effect of surface tension of the inorganic saline solution. China Sci Technol Inform, 2009(22): 42 doi: 10.3969/j.issn.1001-8972.2009.22.017歐陽躍軍. 無機鹽溶液表面張力的影響研究. 中國科技信息, 2009(22):42 doi: 10.3969/j.issn.1001-8972.2009.22.017 [14] Xu Y. Development of membrane-cover dust suppressor for earthwork. Guangzhou Chem Ind, 2019, 47(10): 59 doi: 10.3969/j.issn.1001-9677.2019.10.024許玥. 土方施工階段膜型揚塵抑制劑研制及其性能研究. 廣州化工, 2019, 47(10):59 doi: 10.3969/j.issn.1001-9677.2019.10.024 [15] Liu M L. Brief review for effect of chloride on environment. Sichuan Environ, 1993, 12(3): 74劉明禮. 淺談氯化物對環境的影響. 四川環境, 1993, 12(3):74 [16] Liu S Y, Zhang T, Cai G J, et al. Research progress of soil stabilization with lignin from bio-energy by-products. China J Highway Transport, 2014, 27(8): 1 doi: 10.3969/j.issn.1001-7372.2014.08.001劉松玉, 張濤, 蔡國軍, 等. 生物能源副產品木質素加固土體研究進展. 中國公路學報, 2014, 27(8):1 doi: 10.3969/j.issn.1001-7372.2014.08.001 [17] Yang X X, Wen D J. Development on environmental influence of PVA. J Univ Sci Technol Suzhou Eng Technol, 2005, 18(1): 9楊曉雄, 聞荻江. 聚乙烯醇對環境影響的研究進展. 蘇州科技學院學報(工程技術版), 2005, 18(1):9 [18] Cui H Y, Ren S M. Research status of applying polyacrylamide to control soil erosion. Sci Tech Inform Soil Water Conserv, 2005(2): 25崔海英, 任樹梅. 應用聚丙烯酰胺防治水土流失的研究現狀. 水土保持科技情報, 2005(2):25 [19] Huang H, Shi B, Liu J, et al. Experimental study on the strength of soil modified by STW ecotypic soil stabilizer. J Disaster Prevent Mitigat Eng, 2008, 28(1): 87黃河, 施斌, 劉瑾, 等. STW型生態土壤穩定劑改性土強度試驗研究. 防災減災工程學報, 2008, 28(1):87 [20] Liu J, Shi B, Jiang H T, et al. Experimental study on the water-stability property of clay aggregates stabilized by STW polymer soil stabilizer. Hydrogeol Eng Geol, 2009, 36(2): 77 doi: 10.3969/j.issn.1000-3665.2009.02.016劉瑾, 施斌, 姜洪濤, 等. STW型高分子土壤穩定劑改良粘性土團聚體水穩性實驗研究. 水文地質工程地質, 2009, 36(2):77 doi: 10.3969/j.issn.1000-3665.2009.02.016 [21] Wang Y T, Yang K, Tang Z J, et al. The effectiveness of the consolidated desert surface by mixing of fly ash and polyacrylamide in wind erosion control. Water Air Soil Pollut, 2016, 227(12): 429 [22] Wang Y M, Chen W W, Han W F. Microstudy on mechanism of sand fixation with SH. Rock Soil Mech, 2005, 26(4): 650 doi: 10.3969/j.issn.1000-7598.2005.04.031王銀梅, 諶文武, 韓文峰. SH固沙機理的微觀探討. 巖土力學, 2005, 26(4):650 doi: 10.3969/j.issn.1000-7598.2005.04.031 [23] Wang Y M, Sun G P, Chen W W, et al. Strength characteristics of sand fixated by SH. Chin J Rock Mech Eng, 2003, 22(Suppl 2): 2883王銀梅, 孫冠平, 諶文武, 等. SH固沙劑固化沙體的強度特征. 巖石力學與工程學報, 2003, 22(增刊2): 2883 [24] Teo J A, Ray C, El-Swaify S A. Screening of polymers on selected Hawaii soils for erosion reduction and particle settling. Hydrol Processes, 2006, 20(1): 109 [25] Zhao Y, Mu X M, Wang F, et al. Impact of conservation tillage on soil wind erosion of farmland based on wind tunnel test. Res Soil Water Conserv, 2012, 19(3): 16趙云, 穆興民, 王飛, 等. 保護性耕作對農田土壤風蝕影響的室內風洞實驗研究. 水土保持研究, 2012, 19(3):16 [26] Du L. Analysis of dust raising mechanism and dust suppression technology in highway engineering. Highways Autom Appl, 2019(6): 148 doi: 10.3969/j.issn.1671-2668.2019.06.038杜麗. 公路工程施工揚塵機理及抑塵技術分析. 公路與汽運, 2019(6):148 doi: 10.3969/j.issn.1671-2668.2019.06.038 [27] Wu D. Polymer Type Chemical Dust Suppression Agent and Its Properties[Dissertation]. Tianjin: Hebei University of Technology, 2017吳丹. 聚合物型化學抑塵劑及其性能[學位論文]. 天津: 河北工業大學, 2017 [28] Liu D, Ren S M, Yang P L. Influence of PAM to capability of anti-wind erosion of soil. Soil Water Conserv China, 2006(12): 33 doi: 10.3969/j.issn.1000-0941.2006.12.013劉東, 任樹梅, 楊培嶺. PAM對土壤抗風蝕能力的影響. 中國水土保持, 2006(12):33 doi: 10.3969/j.issn.1000-0941.2006.12.013 [29] Dong Z, Li H L, Zuo H J, et al. Wind tunnel test on sand-preventing mechanism of soil coagulant sand-barrier. J Arid Land Resour Environ, 2004, 18(3): 154 doi: 10.3969/j.issn.1003-7578.2004.03.030董智, 李紅麗, 左合君, 等. 土壤凝結劑沙障防沙機理的風洞模擬實驗研究. 干旱區資源與環境, 2004, 18(3):154 doi: 10.3969/j.issn.1003-7578.2004.03.030 -