Production analysis and fracturing parameter optimization of shale gas from Zhongmou Block in southern North China Basin
-
摘要: 南華北盆地中牟區塊頁巖氣是海陸過渡相頁巖氣的典型代表,以地質模型為基礎,結合理論分析和數值模擬手段,研究了不同儲層參數對水平井開采頁巖氣的采收率、日產氣量以及累計產氣量的影響規律,通過正交設計與多指標分析方法確定了影響頁巖氣產能的主控因素,考慮各主控因素與頁巖氣產能的關系,建立了水平井壓裂條件下的累計產氣量和頁巖氣采收率方程。針對目標壓裂層段,對比分析了不同壓裂參數條件下的頁巖氣產能變化,指出水平井段長度和動用程度是決定產能大小的主要參數。在一定的壓裂級數條件下,裂縫長度的增加可以有效溝通裂縫,從而提高產能。以凈現值大于0和收益率達到8%~12%作為經濟評價指標,優選了3類海陸過渡相頁巖氣壓裂參數。Abstract: Shale gas is a type of unconventional natural gas that can be accumulated in a large area in tight shale and has self-generation and self-storage abilities. The low porosity and low permeability characteristics of shale make its development under natural conditions poor, and large-scale stimulations of its production are needed to achieve economic benefits. Due to the complex geological tectonic conditions in China, three types of organic-rich shale strata, namely, marine facies, marine-continental facies, and continental facies, are developed during the multicycle tectonic evolution. China has made important breakthroughs in the exploration and development of marine shale gas. Considerable effort has also been invested in the exploration of continental shale gas. The exploration and research of marine-continental transitional shale have gradually attracted people’s attention. Marine-continental transitional shales are of importance to the shale gas field. However, research on transitional shale gas exploitation is still in its infancy, and this topic needs to be urgently discussed and solved. Shale gas exploitation seriously restricts the development level of shale gas in China. The shale gas in the Zhongmou Block of the southern North China Basin is a typical representative of marine-continental transitional shale gas, with good gas resources and development prospects. In this study, based on a geologic model, the influences of different reservoir parameters on oil recovery, daily gas production, and cumulative gas production were examined through the integration of theoretical analyses and numerical simulations. The main factors affecting the gas production capacity of shale were determined by an orthogonal design and multi-index analysis. Considering the relationship between main control factors and shale gas production capacity, the cumulative gas production and shale gas recovery equations under the horizontal fracturing condition were established. For the target fracturing zones, the shale gas productions under different fracturing parameters were compared and analyzed, which shows that the horizontal length and producing degree are the main parameters that determine the production capacity. In a certain fracturing condition, the increase in fracture length can effectively communicate natural cracks, thereby increasing production capacity. Taking a net present value greater than 0 and a yield rate ranging from 8% to 12% as the economic evaluation indices, three types of fracturing parameters are optimized for the marine-continental transitional shales.
-
表 1 國內外典型頁巖氣藏的井網井距范圍[8]
Table 1. Well spacing ranges of typical shale gas reservoirs at home and abroad[8]
Block Horizontal length/m Well control area/km2 Average well control area/km2 Average well spacing/m Barnett 1219 0.24–0.65 0.45 280 Haynesville 1402 0.16–2.27 0.5 260 Marcellus 1128 0.16–0.65 0.42 260 Eagle Ford 1494 0.32–2.59 0.6 300 South Sichuan 1448 0.36–1.10 0.65 400–500 表 2 儲層模擬參數表
Table 2. Reservoir simulation parameters
Parameter Numerical value Depth/m 2930 Horizontal well length/m 1000 Shale density/(kg·m?3) 2695 Gas viscosity/(Pa·s) 2.01×10?5 Porosity/% 2.6 Matrix permeability/(10?3 μm2) 1.5×10?4 Fracture permeability/(10?3 μm2) 3.25×10?2 Initial reservoir pressure/MPa 41.51 Temperature/K 343.15 表 3 模擬參數因子水平表
Table 3. Levels of the impact factors for reservoir simulation
Levels Impact factors Buried
depth/mThickness/
mPorosity/
%Permeability/
(10?6 μm2)Adsorbed gas
content/(m3?t?1)1 2600 18 2 1 1.0 2 2700 20 3 5 1.7 3 2800 22 4 10 2.4 4 2900 24 5 100 3.1 表 4 水平井開采頁巖氣的儲層參數正交設計表
Table 4. Orthogonal optimization design of reservoir parameters for horizontal well exploitation
Levels 影響因子 Productivity/(107 m3) A
Buried depth/mB
Thickness/mC
Porosity/%D
Fracture permeability/(10?3 μm2)E
Adsorbed gas content/(m3?t?1)1 1 1 1 1 1 1.60497 2 1 2 2 2 2 4.05602 3 1 3 3 3 3 6.60769 … … …… … … … … 14 4 2 3 1 4 3.05960 15 4 3 2 4 1 7.60656 16 4 4 1 3 2 5.29045 表 5 不同儲層參數的正交設計試驗結果
Table 5. Orthogonal design results under different reservoir parameters
Evaluation index Impact factors A
Buried depth/mB
Thickness/mC
Porosity/%D
Fracture permeability/(10?3 μm2)E
Adsorbed gas content/(m3?t?1)L1 24.93148 20.06609 17.06219 10.92723 21.70743 L2 19.75266 19.81059 19.71879 19.40421 20.63355 L3 22.25330 21.87626 23.26006 23.88190 20.75562 L4 21.33711 26.52162 28.23352 34.06120 25.17795 l1 6.23287 5.01652 4.26555 2.73181 5.42686 l2 4.93817 4.95265 4.92970 4.85105 5.15839 l3 5.56332 5.46906 5.81501 5.97048 5.18891 l4 5.33428 6.63040 7.05838 8.51530 6.29449 R 1.295 1.678 2.793 5.783 1.136 表 6 不同儲層影響參數條件下的累計產氣量
Table 6. Accumulative gas production under different influencing parameters
Permeability Porosity Thickness Permeability/(10?6 μm2) Cumulative gas/(107 m3) Porosity/% Cumulative gas/(107 m3) Thickness/m Cumulative gas/(107 m3) 1 2.94 2 2.42 18 2.69 5 5.14 3 2.69 20 2.94 10 6.53 4 2.94 22 3.17 50 10.70 5 3.17 24 3.38 表 7 m值計算數據表
Table 7. Calculation data sheet for m
k/(10?6 μm2) Qp/m3 A/m2 h/m ? Sgi Tsc/K Pi/MPa 1 2.94 360000 20 0.04 0.95 297 28 5 5.14 360000 20 0.04 0.95 297 28 10 6.53 360000 20 0.04 0.95 297 28 50 10.7 360000 20 0.04 0.95 297 28 Zi Psc/MPa T/K Pa/MPa Za n m dm/% 0.998 0.1 313 2 0.85 0.3319 4.76 1.21 0.998 0.1 313 2 0.85 0.3319 4.88 ?1.24 0.998 0.1 313 2 0.85 0.3319 4.93 ?2.19 0.998 0.1 313 2 0.85 0.3319 4.73 1.85 表 8 頁巖氣開發鉆井和壓裂成本數據表
Table 8. Drilling and fracturing cost of shale gas development
Items Cost Gas price (tax excluded)/(Yuan·m?3) 1.18 Operating cost/(Yuan·m?3) 0.35 Period expense/(Yuan·m?3) 0.37 Drilling cost of horizontal section/(Yuan·m?1) 10486 Drilling cost of vertical section/(Yuan·m?1) 3000 Fracturing cost of each stage/(104 Yuan) 96 Commodity rate/% 90 Evaluation period/a 30 Resource tax rate/% 6 Vat rates/% 13 Government subsidy/(Yuan·m?3) 0.23 Discount rate/% 10 表 9 不同壓裂設計方案下的生產情況統計表
Table 9. Production statistics for different fracturing design schemes
Scheme Fracturing
designHorizontal
length/mFracturing
stageFracture
length/mCumulative
gas/(107 m3)Cost/
YuanIncome/
YuanYield
rate/%NPV/
Yuan1 h1100-3×10 1100 3 10 3.88 23114603 12729131 ?44.93 ?6348843.23 2 h1100-3×14 1100 3 14 3.98 23114603 13651900 ?40.94 ?5828090.51 3 h1100-3×18 1100 3 18 4.06 23114603 14403913 ?37.68 ?5397061.08 … … … … … … … … … … 34 h1500-14×10 1500 14 10 8.30 37869006 38848540 2.59 7400812.79 35 h1500-14×14 1500 14 14 8.44 37869006 40100914 5.89 8422714.02 36 h1500-14×18 1500 14 18 8.55 37869006 41112843 8.57 9259836.49 表 10 壓裂參數設計方案優選
Table 10. Optimization of fracturing parameter design schemes
Optimization type Fracturing design Cumulative gas/(107 m3) NPV/Yuan Yield rate/% Ⅰ h1300-13×18 8.059 9228246.73 13.89 h1500-10×10 7.831 6434064.82 12.62 h1500-10×14 7.979 7528738.22 16.64 Ⅱ h1100-11×18 6.972 6921110.65 9.17 h1300-13×14 7.9517 8428224.64 11.02 h1500-14×18 8.548 9259836.49 8.57 Ⅲ h1100-5×14 5.436 374418.11 0.62 h1100-5×18 5.542 1017807.02 4.53 h1100-11×10 6.754 5375518.12 2.65 h1100-11×14 6.874 6224066.05 6.25 h1300-13×10 7.817 7452739.96 7.48 h1500-14×10 8.303 7400812.79 2.59 h1500-14×14 8.439 8422714.02 5.89 259luxu-164 -
參考文獻
[1] Zhang J C, Xue H, Zhang D M, et al. Shale gas and its accumulation mechanism. Geoscience, 2003(4): 466 doi: 10.3969/j.issn.1000-8527.2003.04.019張金川, 薛會, 張德明, 等. 頁巖氣及其成藏機理. 現代地質, 2003(4):466 doi: 10.3969/j.issn.1000-8527.2003.04.019 [2] Zhang J C, Bian R K, Jing T Y, et al. Fundamental significance of gas shale theoretical research. Geol Bull China, 2011, 30(2-3): 318張金川, 邊瑞康, 荊鐵亞, 等. 頁巖氣理論研究的基礎意義. 地質通報, 2011, 30(2-3):318 [3] Lu P, Liu X G. A summary of the shale gas exploration and development. Petrol Geophys, 2013, 11(3): 54路萍, 劉興國. 頁巖氣勘探開發綜述. 油氣地球物理, 2013, 11(3):54 [4] Lü X M, Pan J J, Zhang X. Current situation and development direction of shale gas fracturing technology. Contemporary Chem Ind, 2019, 48(7): 1599呂效明, 潘進進, 張昕. 頁巖氣壓裂技術現狀及發展方向. 當代工業, 2019, 48(7):1599 [5] Cui Q. Fracture-stimulation technology of American shale gas. Petrochem Ind Appl, 2010, 29(10): 1 doi: 10.3969/j.issn.1673-5285.2010.10.001崔青. 美國頁巖氣壓裂增產技術. 石油化工應用, 2010, 29(10):1 doi: 10.3969/j.issn.1673-5285.2010.10.001 [6] Zhang J C, Jiang S L, Tang X, et al. Accumulation types and resources characteristics of shale gas in China. Nat Gas Ind, 2009, 29(12): 109 doi: 10.3787/j.issn.1000-0976.2009.12.033張金川, 姜生玲, 唐玄, 等. 我國頁巖氣富集類型及資源特點. 天然氣工業, 2009, 29(12):109 doi: 10.3787/j.issn.1000-0976.2009.12.033 [7] Zou C N, Dong D Z, Wang S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China. Petrol Explor Dev, 2010, 37(6): 641 doi: 10.1016/S1876-3804(11)60001-3鄒才能, 董大忠, 王社教, 等. 中國頁巖氣形成機理、地質特征及資源潛力. 石油勘探與開發, 2010, 37(6):641 doi: 10.1016/S1876-3804(11)60001-3 [8] Jia A L, Wei Y S, Jin Y Q. Progress in key technologies for evaluating marine shale gas development in China. Petrol Explor Dev, 2016, 43(6): 949賈愛林, 位云生, 金亦秋. 中國海相頁巖氣開發評價關鍵技術進展. 石油勘探與開發, 2016, 43(6):949 [9] Wang Z G. Reservoir formation conditions and key efficient exploration & development technologies for marine shale gas fields in Fuling area, South China. Acta Petrol Sin, 2019, 40(3): 370 doi: 10.7623/syxb201903011王志剛. 涪陵大型海相頁巖氣田成藏條件及高效勘探開發關鍵技術. 石油學報, 2019, 40(3):370 doi: 10.7623/syxb201903011 [10] Sun X N, Chen Y Y, Wang G C, et al. Analysis of influencing factors on productivity of terrestrial shale gas in Yanchang exploration area. Complex Hydrocarbon Reservoirs, 2019, 12(4): 8孫細寧, 陳奕奕, 王桂成, 等. 延長探區陸相頁巖氣產能影響因素分析. 復雜油氣藏, 2019, 12(4):8 [11] Wang Z P, Zhang J C, Sun R, et al. The gas-bearing characteristics analysis of the Longtan Formation transitional shale in Well Xiye 1. Earth Sci Frontiers, 2015, 22(2): 243王中鵬, 張金川, 孫睿, 等. 西頁1井龍潭組海陸過渡相頁巖含氣性分析. 地學前緣, 2015, 22(2):243 [12] Tang X, Zhang J C, Ding W L, et al. The reservoir property of the Upper Paleozoic marine –continental transitional shale and its gas-bearing capacity in the Southeastern Ordos Basin. Earth Sci Frontiers, 2016, 23(2): 147唐玄, 張金川, 丁文龍, 等. 鄂爾多斯盆地東南部上古生界海陸過渡相頁巖儲集性與含氣性. 地學前緣, 2016, 23(2):147 [13] Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103朱維耀, 岳明, 劉昀楓, 等. 中國致密油藏開發理論研究進展. 工程科學學報, 2019, 41(9):1103 [14] Zhang C, Chang X L, Ding Y Y, et al. Analysis of geological characteristics and factors influencing shale gas productivity. China Petrol Chem Standard Qual, 2019(21): 32張聰, 常小龍, 丁洋洋, 等. 頁巖氣地質特征及產能影響因素分析. 中國石油和化工標準與質量, 2019(21):32 [15] Wang C J, Chen J M, Zhang H, et al. Impact of the geological factors on high shale gas productivity. Petrol Geophys, 2014, 12(4): 49王崇敬, 陳健明, 張鶴, 等. 影響頁巖氣高產的地質因素分析. 油氣地球物理, 2014, 12(4):49 [16] Ma W L, Li Z P, Gao C, et al. “Pearson-MIC” analysis method for the initial production key controlling factors of shale gas wells. China Sciencepaper, 2018, 13(15): 1765 doi: 10.3969/j.issn.2095-2783.2018.15.013馬文禮, 李治平, 高闖, 等. 頁巖氣井初期產能主控因素“Pearson-MIC”分析方法. 中國科技論文, 2018, 13(15):1765 doi: 10.3969/j.issn.2095-2783.2018.15.013 [17] Peng C Z, Xue X N, Yang M P, et al. Reasonable development method and well type selection of shale gas reservoir. Reservoir Eval Dev, 2016, 6(6): 67 doi: 10.3969/j.issn.2095-1426.2016.06.013彭彩珍, 薛曉寧, 楊滿平, 等. 頁巖氣藏合理開發方式及井型優選. 油氣藏評價與開發, 2016, 6(6):67 doi: 10.3969/j.issn.2095-1426.2016.06.013 [18] Qiu Q L, Zhang G B, Feng H, et al. Characteristics of shale gas and analysis of the prospecting potential in Zhongmu block, Henan Province. Contrib Geol Miner Resour Res, 2018, 33(1): 70 doi: 10.6053/j.issn.1001-1412.2018.01.009邱慶倫, 張古彬, 馮輝, 等. 河南中牟區塊頁巖氣特征及勘探前景分析. 地質找礦論叢, 2018, 33(1):70 doi: 10.6053/j.issn.1001-1412.2018.01.009 [19] Zhang M C, Feng H, Weng J C, et al. Reservoir characteristics and gas-bearing potential of transitional-facies shale, Henan Province. Nat Gas Explor Dev, 2018, 41(2): 37張木辰, 馮輝, 翁紀昌, 等. 河南海陸過渡相頁巖儲集特征及含氣性初探. 天然氣勘探與開發, 2018, 41(2):37 [20] Ibrahim A I. Numerical Simulation and Production Optimization of Shale Gas Reservoir [Dissertation]. Qingdao: China University of Petroleum (East China), 2016.Ibrahim Abdi Ibrahim. 頁巖氣藏數值模擬及參數優化[學位論文]. 青島: 中國石油大學(華東), 2016 [21] Mi L D, Jiang H Q, Li J J. Investigation of shale gas numerical simulation method based on discrete fracture network model. Nat Gas Geosci, 2014, 25(11): 1795 doi: 10.11764/j.issn.1672-1926.2014.11.1795糜利棟, 姜漢橋, 李俊鍵. 頁巖氣離散裂縫網絡模型數值模擬方法研究. 天然氣地球科學, 2014, 25(11):1795 doi: 10.11764/j.issn.1672-1926.2014.11.1795 [22] Yang Y. Study on the Fracturing Optimum Design and Effect Evaluation of Deep Shale Gas[Dissertation]. Beijing: China University of Petroleum (Beijing), 2017楊楊. 深層頁巖氣壓裂優化設計及效果評估研究[學位論文]. 北京: 中國石油大學(北京), 2017 [23] Cipolla C L, Lolon E P, Erdle J C, et al. Modeling well performance in shale-gas reservoirs // SPE/EAGE Reservoir Characterization and Simulation Conference. Abu Dhabi, 2009 [24] Barry R. Accurate simulation of non-Darcy flow in stimulated fractured shale reservoirs // SPE Western Regional Meeting. Anaheim, 2010 [25] Liu R J, Zhang Y W, Wen C W, et al. Study on the design and analysis methods of orthogonal experiment. Exp Technol Manage, 2010, 27(9): 52 doi: 10.3969/j.issn.1002-4956.2010.09.016劉瑞江, 張業旺, 聞崇煒, 等. 正交試驗設計和分析方法研究. 實驗技術與管理, 2010, 27(9):52 doi: 10.3969/j.issn.1002-4956.2010.09.016 [26] Du D F, Fu J G, Zhou Z H, et al. Research on calculation methods for recovery factor of shale gas reservoirs. Special Oil Gas Reservoirs, 2015, 22(5): 74 doi: 10.3969/j.issn.1006-6535.2015.05.015杜殿發, 付金剛, 周志海, 等. 頁巖氣藏采收率計算方法探討. 特種油氣藏, 2015, 22(5):74 doi: 10.3969/j.issn.1006-6535.2015.05.015 [27] Gao S K, Zhu W L, Yin C. An economic analysis of shale gas resources: A case study of the Marcellus shale Play. Nat Gas Ind, 2014, 34(6): 141 doi: 10.3787/j.issn.1000-0976.2014.06.023高世葵, 朱文麗, 殷誠. 頁巖氣資源的經濟性分析— —以Marcellus頁巖氣區帶為例. 天然氣工業, 2014, 34(6):141 doi: 10.3787/j.issn.1000-0976.2014.06.023 [28] Fu J J, Tong Y H. Economics of Industrial Technology. 3rd Ed. Beijing: Tsinghua University Press, 1996傅家驥, 仝允桓. 工業技術經濟學. 3版. 北京: 清華大學出版社, 1996 [29] Li Q H, Chen M, Jin Y, et al. Economic influence of hydraulic fracturing parameters on horizontal wells in shale gas bed. Special Oil Gas Reservoirs, 2013, 20(1): 146 doi: 10.3969/j.issn.1006-6535.2013.01.040李慶輝, 陳勉, 金衍, 等. 壓裂參數對水平頁巖氣井經濟效果的影響. 特種油氣藏, 2013, 20(1):146 doi: 10.3969/j.issn.1006-6535.2013.01.040 [30] Geng X J, Wang A G, Lu C L. Analysis of the economics of shale gas exploitation and the influence factors. China Min Mag, 2016, 25(10): 31 doi: 10.3969/j.issn.1004-4051.2016.10.008耿小燼, 王愛國, 魯陳林. 頁巖氣開發的經濟效益與影響因素分析. 中國礦業, 2016, 25(10):31 doi: 10.3969/j.issn.1004-4051.2016.10.008 [31] Xie H Y. Research on the environmental cost of coal price formation mechanism. China Economic Trade Herald, 2010(12): 40謝海燕. 煤炭價格形成機制中的環境成本研究. 中國經貿導報, 2010(12):40 [32] Wu Y T, Zhong M, You S G, et al. Economic evaluation method of shale gas investment projects. Res Dev, 2015(6): 68吳艷婷, 鐘敏, 游聲剛, 等. 頁巖氣投資項目經濟評價方法. 開發研究, 2015(6):68 [33] Guan C X, Lu J L, Tang H J, et al. Competitiveness comparison between domestic unconventional natural gas and imported gas in the context of low oil price. Nat Gas Ind, 2016, 36(12): 119 doi: 10.3787/j.issn.1000-0976.2016.12.017關春曉, 陸家亮, 唐紅君, 等. 低油價下國內非常規氣與進口氣競爭力對比. 天然氣工業, 2016, 36(12):119 doi: 10.3787/j.issn.1000-0976.2016.12.017 -