<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于粒子群算法的轉爐用氧節能優化調度

孔福林 童莉葛 魏鵬程 張培昆 王立 吳冰 陳恩軍

孔福林, 童莉葛, 魏鵬程, 張培昆, 王立, 吳冰, 陳恩軍. 基于粒子群算法的轉爐用氧節能優化調度[J]. 工程科學學報, 2021, 43(2): 279-288. doi: 10.13374/j.issn2095-9389.2020.04.02.002
引用本文: 孔福林, 童莉葛, 魏鵬程, 張培昆, 王立, 吳冰, 陳恩軍. 基于粒子群算法的轉爐用氧節能優化調度[J]. 工程科學學報, 2021, 43(2): 279-288. doi: 10.13374/j.issn2095-9389.2020.04.02.002
KONG Fu-lin, TONG Li-ge, WEI Peng-cheng, ZHANG Pei-kun, WANG Li, WU Bing, CHEN En-jun. Optimal scheduling of converter oxygen based on particle swarm optimization[J]. Chinese Journal of Engineering, 2021, 43(2): 279-288. doi: 10.13374/j.issn2095-9389.2020.04.02.002
Citation: KONG Fu-lin, TONG Li-ge, WEI Peng-cheng, ZHANG Pei-kun, WANG Li, WU Bing, CHEN En-jun. Optimal scheduling of converter oxygen based on particle swarm optimization[J]. Chinese Journal of Engineering, 2021, 43(2): 279-288. doi: 10.13374/j.issn2095-9389.2020.04.02.002

基于粒子群算法的轉爐用氧節能優化調度

doi: 10.13374/j.issn2095-9389.2020.04.02.002
基金項目: 國家重點研發計劃資助項目(2018YFB0606104)
詳細信息
    通訊作者:

    E-mail:tonglige@me.ustb.edu.cn

  • 中圖分類號: TF724.4

Optimal scheduling of converter oxygen based on particle swarm optimization

More Information
  • 摘要: 針對鋼鐵空分企業氧氣放散率高、綜合能耗高的問題,建立了以減小轉爐用氧總量波動和降低系統能耗為目標的轉爐用氧調度模型。綜合考慮了吹煉區間時長不變、各吹煉區間起始時刻滿足工藝要求、鋼水溫度大于1250 °C、轉爐用氧調度前后變動最小等約束,以基于整數空間的粒子群(Particle swarm optimization, PSO)算法進行求解。同時,以國內某大型鋼鐵企業空分廠為案例,采用Pipeline Studio軟件建立該廠區氧氣管網輸配系統模型,對轉爐用氧調度的節能優化效果進行了驗證。結果表明,本文提出的轉爐用氧節能優化調度在研究時間段盡可能安排單臺轉爐生產,有效降低多臺轉爐吹氧重疊時間,在生產時間內錯峰用氧,減小轉爐用氧總量波動,緩解氧氣供求不平衡的矛盾。在120 min研究時長內,調度前后系統氧氣放散量由1242.1 m3降低至0,相應的空分系統的電耗節約了1192.42 kW·h,氧壓機的壓縮能耗增大了41 kW·h,氧氣管網輸配系統節約總能耗為1151.42 kW·h。綜合計算來看,轉爐用氧調度應用到全年,預計減少氧氣放散總量5.44×106 m3,節約氧氣管網輸配系統總能耗5.22×106 kW·h。

     

  • 圖  1  國內某大型空分鋼鐵企業中壓氧氣管網輸配系統示意圖

    Figure  1.  Schematic of a medium-pressure oxygen transmission and distribution network system for a large domestic air separation steel plant

    圖  2  各轉爐的生產周期排列示意

    Figure  2.  Schematic arrangement of the production cycle of each converter

    圖  3  某次算法求解收斂曲線

    Figure  3.  Convergence curve of algorithm solution

    圖  4  不同設備氧氣流量隨時間的變化圖

    Figure  4.  Change in oxygen flow rate over time for different equipment types

    圖  5  調度前后5臺轉爐的吹氧情況對比。(a)調度前(b)調度后

    Figure  5.  Comparison of oxygen blowing situations of five converters before (a) and after (b) dispatching

    圖  6  調度前后轉爐的總用氧量隨時間的變化

    Figure  6.  Changes in total oxygen consumption of converter before and after scheduling

    圖  7  調度前后轉爐的工作用氧情況

    Figure  7.  Working oxygen conditions of converter before and after scheduling

    圖  8  中壓氧氣管網輸配系統模型示意圖

    Figure  8.  Schematic model of medium-pressure oxygen pipeline network system

    圖  9  采用調度的氧壓機出口壓力對比

    Figure  9.  Outlet pressure comparison of oxygen compressor using scheduling

    圖  10  采用調度的中壓管道壓力對比

    Figure  10.  Medium-pressure pipeline pressure comparison using scheduling

    圖  11  采用放散的氧壓機出口壓力變化曲線

    Figure  11.  Oxygen compressor outlet pressure change curve using medium pressure release

    圖  12  采用放散的中壓管道壓力變化曲線

    Figure  12.  Pressure curve of medium-pressure pipeline

    圖  13  中壓放散閥氧氣流量時間變化曲線

    Figure  13.  Time-varying curve of oxygen flow of medium-pressure relief valve

    圖  14  氧壓機的壓縮能耗對比

    Figure  14.  Compression energy consumption of oxygen compressor comparison

    圖  15  氧壓機的等溫效率對比

    Figure  15.  Isothermal efficiency of oxygen compressor comparison

    表  1  PSO算法基本參數

    Table  1.   Basic parameters of PSO algorithm

    k1k2RMtmaxc1c2wmaxwmin
    0.99990.0001600112000.80.80.950.05
    下載: 導出CSV

    表  2  工序氧氣流量表

    Table  2.   Process oxygen flow meter

    TimeTotal instantaneous oxygen demand for ironmaking/
    (m3?h?1)
    Total instantaneous oxygen demand for steelmaking/
    (m3?h?1)
    Total instantaneous oxygen production/
    (m3?h?1)
    Network pressure/MPa
    080733.34860875.992135690.1171.962
    279554.53560516.899136006.6641.962
    479819.27748000.639136118.8361.965
    680312.50423078.353136107.4571.986
    878686.02535453.71116135280.5272.022
    下載: 導出CSV

    表  3  氧壓機能耗和效率的計算步驟

    Table  3.   Calculation steps of oxygen compressor energy consumption and efficiency

    ProcedureSpecific operation
    STEP1Use Matlab R2014a software to calculate the inlet guide vane opening k according to the intake flow Qn and exhaust pressure pd.
    STEP2Calculate the shaft power Nz from the inlet guide vane opening k and the intake air flow Qn.
    STEP3Calculate the isothermal efficiency ηT combined with the isothermal efficiency calculation formula of centrifugal oxygen compressor.
    STEP4Use the trapz function in Matlab R2014a software to calculate the integral of the shaft power Nz during the study period to obtain the value of the total energy consumption E.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li X C. Accelerate the development of high-quality steel industry. Metall Economy Manage, 2020(1): 1

    李新創. 加快推進鋼鐵產業高質量發展. 冶金經濟與管理, 2020(1):1
    [2] Yang J, Hu Q, Xiao T, et al. Energy efficiency modeling, process parameter optimization and sequencing modeling optimization of cold rolling continuous annealing units based on energy consumptions. Chin Mech Eng, 2020, 31(14): 1724 doi: 10.3969/j.issn.1004-132X.2020.14.012

    楊杰, 胡琦, 肖亭, 等. 基于能耗的冷軋連退機組能效建模與工藝參數優化及排序建模優化. 中國機械工程, 2020, 31(14):1724 doi: 10.3969/j.issn.1004-132X.2020.14.012
    [3] Zhang Y P, Ling C, Zhou J B, et al. Energy consumption and optimize circulate of air separation unit of steel corporation. Energy Metall Ind, 2014, 33(5): 6 doi: 10.3969/j.issn.1001-1617.2014.05.002

    張延平, 凌晨, 周建波, 等. 鋼鐵企業大型空分的能耗分析與經濟運行. 冶金能源, 2014, 33(5):6 doi: 10.3969/j.issn.1001-1617.2014.05.002
    [4] Tong L G, Zhang A J, Li Y L, et al. Exergy and energy analysis of a load regulation method of CVO of air separation unit. Appl Therm Eng, 2015, 80: 413
    [5] Zhang Q Q, Zhao J, Sheng C Y, et al. A two-stage adjustment method for the balance of the oxygen system in steel and iron enterprises. Control Eng China, 2017, 24(4): 716

    張乾乾, 趙珺, 盛春陽, 等. 一種兩階段鋼鐵企業氧氣系統平衡調整方法. 控制工程, 2017, 24(4):716
    [6] Lu H, Sun P. Steel enterprises based on the wireless sensor network oxygen real-time optimization scheduling. Comput Eng Software, 2018, 39(5): 129 doi: 10.3969/j.issn.1003-6970.2018.05.028

    盧宏, 孫鵬. 鋼鐵企業基于無線傳感網的氧氣實時優化調度. 軟件, 2018, 39(5):129 doi: 10.3969/j.issn.1003-6970.2018.05.028
    [7] Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking?continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144

    劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144
    [8] Zheng P, Tang Q H, Zhang Q M, et al. Discrete particle swarm optimization for steelmaking and continuous casting production. Mach Des Manuf, 2016(7): 49 doi: 10.3969/j.issn.1001-3997.2016.07.013

    鄭鵬, 唐秋華, 張啟敏, 等. 基于離散粒子群算法的煉鋼連鑄生產調度. 機械設計與制造, 2016(7):49 doi: 10.3969/j.issn.1001-3997.2016.07.013
    [9] Zhang P K, Wang L. Effects of oxygen pipe-network pressure on the oxygen scheduling during blast furnace blow-down. Chin J Eng, 2017, 39(2): 283

    張培昆, 王立. 高爐休風時供氧管網壓力對氧氣調度的影響. 工程科學學報, 2017, 39(2):283
    [10] Zhang Z Y, Sun Y G, Ma Y. Based on the improved simplex method of iron and steel enterprise oxygen system optimization scheduling research. Math Pract Theory, 2018, 48(23): 189

    張子陽, 孫彥廣, 馬湧. 基于改進單純形法的鋼鐵企業氧氣系統優化調度研究. 數學的實踐與認識, 2018, 48(23):189
    [11] Tong L G, Wang L, Tang X Z, et al. Model of blast furnace blow down for oxygen releasing rate. Energy Metall Ind, 1999, 18(3): 16

    童莉葛, 王立, 湯學忠, 等. 降低氧氣放散率的高爐休風模型. 冶金能源, 1999, 18(3):16
    [12] Chen G, Lu Z W, Cai J J, et al. Dynamic simulation of oxygen supply system in iron and steel company. J Northeast Univ Nat Sci, 2002, 23(10): 940

    陳光, 陸鐘武, 蔡九菊, 等. 鋼鐵企業氧氣系統動態仿真. 東北大學學報(自然科學版), 2002, 23(10):940
    [13] Zheng Z, Zhu D F, Gao X Q. Production planning based on an ant colony algorithm for steel-making and continuous casting. J Univ Sci Technol Beijing, 2009, 31(4): 504 doi: 10.3321/j.issn:1001-053X.2009.04.019

    鄭忠, 朱道飛, 高小強. 基于蟻群算法的煉鋼-連鑄作業計劃編制方法. 北京科技大學學報, 2009, 31(4):504 doi: 10.3321/j.issn:1001-053X.2009.04.019
    [14] Wang J C, Li Q, Cui J R, et al. An improved artificial bee colony algorithm: particle bee colony. Chin J Eng, 2018, 40(7): 871

    王繼超, 李擎, 崔家瑞, 等. 一種改進的人工蜂群算法——粒子蜂群算法. 工程科學學報, 2018, 40(7):871
    [15] Zhang Z, Cao L L, Lin W H, et al. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method. Chin J Eng, 2019, 41(8): 1052

    張壯, 曹玲玲, 林文輝, 等. 基于IPSO-RELM轉爐冶煉終點錳含量預測模型. 工程科學學報, 2019, 41(8):1052
    [16] Zhang P K, Wang L. Effects of temporary shutdown time-threshold on oxygen production schedule in air separation unit. CIESC J, 2017, 68(6): 2423

    張培昆, 王立. 空分短期停車時間閾值對氧氣生產調度的影響. 化工學報, 2017, 68(6):2423
    [17] Li S, Zheng X M, Ma A Y, et al. Construction and application of activity models for CaO?SiO2?Al2O3?TiO2 slag system. Rare Mrtals, 2020, 44(5): 540

    李松, 鄭雪梅, 馬愛元, 等. CaO?SiO2?Al2O3?TiO2渣系活度計算模型的建立及應用. 稀有金屬, 2020, 44(5):540
    [18] Xu G, Li M, Xu J W, et al. Control technology of end-point carbon in converter steelmaking based on functional digital twin model. Chin J Eng, 2019, 41(4): 52

    徐鋼, 黎敏, 徐金梧, 等. 基于函數型數字孿生模型的轉爐煉鋼終點碳控制技術. 工程科學學報, 2019, 41(4):52
    [19] Pang X F, Gao L, Pan Q K, et al. Rescheduling method of steelmaking and continuous casting with breakdown of converter or refining furnace. Control Decis, 2015, 30(11): 1921

    龐新富, 高亮, 潘全科, 等. 某一轉爐或精煉爐故障下煉鋼?連鑄生產重調度方法及應用. 控制與決策, 2015, 30(11):1921
    [20] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50439—2015 Code for Design of Steelmaking Engineering. Beijing: China Planning Press, 2015

    中華人民共和國住房和城鄉建設. GB50439—2015 煉鋼工程設計規范. 北京: 中國計劃出版社, 2015
    [21] Kennedy J, Eberhart R. Particle swarm optimization//Proceeding of ICNN’95-IEEE International Conference on Neural Networks. Perth, 1995: 1942
    [22] Liu Y, Yi S. Optimization of a wind power time series prediction model based on a two-parameter least squares support vector machine. J Beijing Univ Chem Technol, 2019, 46(02): 97

    劉云, 易松. 基于雙參數最小二乘支持向量機(TPA-LSSVM)的風電時間序列預測模型的優化研究. 北京化工大學學報(自然科學版), 2019, 46(02):97
    [23] Xiong W T, Yu B J, Sun L. Improved particle swarm optimization of rolling schedule on 1420 mm 5-stand tandem cold strip mill. J Iron Steel Res, 2014, 26(11): 25

    熊文濤, 禹寶軍, 孫林. 改進粒子群算法對1420 mm五機架冷連軋機軋制規程的優化. 鋼鐵研究學報, 2014, 26(11):25
    [24] Khare A, Rangekar S. A review of particle swarm optimization and its applications in Solar Photovoltaic system. Appl Soft Comput, 2013, 13(5): 2997
    [25] Yang H, Zhang L. Application of PIPELINE STUDIO to simulation and analysis of pepe network. Nat Gas Explor Dev, 2015, 38(3): 91 doi: 10.3969/j.issn.1673-3177.2015.03.021

    楊桓, 張理. PIPELINE STUDIO軟件在管網模擬分析中的應用. 天然氣勘探與開發, 2015, 38(3):91 doi: 10.3969/j.issn.1673-3177.2015.03.021
    [26] Lan Y J, Zhang L, Song D S Y, et al. The discussion of gas storage and peak shaving methods between Pipeline Studio and SPS. Petrochem Ind Technol, 2015, 22(5): 22 doi: 10.3969/j.issn.1006-0235.2015.05.013

    蘭宇劍, 章磊, 宋代詩雨, 等. Pipeline Studio與SPS計算長輸管道儲氣調峰探討. 石化技術, 2015, 22(5):22 doi: 10.3969/j.issn.1006-0235.2015.05.013
    [27] Li H Y, Yu J J, Jin X D. Application of PL studio for gas software to simulation of gas pipeline network. Gas Heat, 2016, 36(7): 75

    李宏陽, 玉建軍, 靳新迪. PL Studio for Gas 軟件在燃氣管網模擬的應用. 煤氣與熱力, 2016, 36(7):75
    [28] Chen F, Li R Z, Wei L B, et al. Analysis of the energy-saving potential and the reform effects of air separation plant. Cryogenic Technol, 2014(5): 1

    陳芳, 李瑞珍, 魏蘭波, 等. 空分設備節能潛力及改造效果分析. 深冷技術, 2014(5):1
    [29] Wang H, Su Y T, Lü Y C. Optimization for performance curves of compressor. Compressor Technol, 2019(6): 13

    王輝, 宿彥通, 呂義超. 壓縮機性能曲線優化. 壓縮機技術, 2019(6):13
  • 加載中
圖(15) / 表(3)
計量
  • 文章訪問數:  2038
  • HTML全文瀏覽量:  838
  • PDF下載量:  116
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-02
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回