-
摘要: 針對鋼鐵空分企業氧氣放散率高、綜合能耗高的問題,建立了以減小轉爐用氧總量波動和降低系統能耗為目標的轉爐用氧調度模型。綜合考慮了吹煉區間時長不變、各吹煉區間起始時刻滿足工藝要求、鋼水溫度大于1250 °C、轉爐用氧調度前后變動最小等約束,以基于整數空間的粒子群(Particle swarm optimization, PSO)算法進行求解。同時,以國內某大型鋼鐵企業空分廠為案例,采用Pipeline Studio軟件建立該廠區氧氣管網輸配系統模型,對轉爐用氧調度的節能優化效果進行了驗證。結果表明,本文提出的轉爐用氧節能優化調度在研究時間段盡可能安排單臺轉爐生產,有效降低多臺轉爐吹氧重疊時間,在生產時間內錯峰用氧,減小轉爐用氧總量波動,緩解氧氣供求不平衡的矛盾。在120 min研究時長內,調度前后系統氧氣放散量由1242.1 m3降低至0,相應的空分系統的電耗節約了1192.42 kW·h,氧壓機的壓縮能耗增大了41 kW·h,氧氣管網輸配系統節約總能耗為1151.42 kW·h。綜合計算來看,轉爐用氧調度應用到全年,預計減少氧氣放散總量5.44×106 m3,節約氧氣管網輸配系統總能耗5.22×106 kW·h。Abstract: The air separation plants of iron and steel enterprises are characterized by a high oxygen-emission rate and high comprehensive energy consumption. To solve this problem, a converter oxygen scheduling model was established based on particle swarm optimization (PSO) with the goal of reducing the fluctuation of the total oxygen consumption and saving system energy consumption in the converter. With the full consideration of constraints, such as the constant duration of blowing intervals, compliant starting time of each blowing interval, molten steel temperature above 1250 °C, and minimal variation before and after converter scheduling, PSO based on integer space was used to solve the hypothesis. With the air separation plant of a large domestic iron and steel enterprise as a case study, Pipeline Studio software was used to establish the oxygen transmission and distribution model, and the energy-saving performance of the converter oxygen scheduling was verified. The results show that the optimal scheduling of converter oxygen based on PSO can arrange oxygen for a single converter as much as possible during the study period; moreover, the optimal scheduling can effectively reduce the overlapping time of oxygen blowing in multiple converters, reduce the fluctuation of the total oxygen amount, and alleviate the contradiction between oxygen supply and demand. The oxygen emission of the pipeline transmission and distribution system before and after the dispatch is reduced from 1242.1 m3 to 0 within the 120 min simulation period; the corresponding air separation system oxygen production energy consumption saves 1192.42 kW·h; the compression energy consumption of the oxygen compressor increases by 41 kW·h; and the total energy saving of the system is 1151.42 kW·h. Based on comprehensive calculations, optimal scheduling of converter oxygen based on PSO is applied throughout the year. The oxygen transmission and distribution pipeline system is expected to reduce the total amount of oxygen emission by 5.44×106 m3 and save the total energy consumption by 5.22×106 kW·h.
-
表 1 PSO算法基本參數
Table 1. Basic parameters of PSO algorithm
k1 k2 R M tmax c1 c2 wmax wmin 0.9999 0.0001 600 11 200 0.8 0.8 0.95 0.05 表 2 工序氧氣流量表
Table 2. Process oxygen flow meter
Time Total instantaneous oxygen demand for ironmaking/
(m3?h?1)Total instantaneous oxygen demand for steelmaking/
(m3?h?1)Total instantaneous oxygen production/
(m3?h?1)Network pressure/MPa 0 80733.348 60875.992 135690.117 1.962 2 79554.535 60516.899 136006.664 1.962 4 79819.277 48000.639 136118.836 1.965 6 80312.504 23078.353 136107.457 1.986 8 78686.025 35453.71116 135280.527 2.022 … … … … … 表 3 氧壓機能耗和效率的計算步驟
Table 3. Calculation steps of oxygen compressor energy consumption and efficiency
Procedure Specific operation STEP1 Use Matlab R2014a software to calculate the inlet guide vane opening k according to the intake flow Qn and exhaust pressure pd. STEP2 Calculate the shaft power Nz from the inlet guide vane opening k and the intake air flow Qn. STEP3 Calculate the isothermal efficiency ηT combined with the isothermal efficiency calculation formula of centrifugal oxygen compressor. STEP4 Use the trapz function in Matlab R2014a software to calculate the integral of the shaft power Nz during the study period to obtain the value of the total energy consumption E. 259luxu-164 -
參考文獻
[1] Li X C. Accelerate the development of high-quality steel industry. Metall Economy Manage, 2020(1): 1李新創. 加快推進鋼鐵產業高質量發展. 冶金經濟與管理, 2020(1):1 [2] Yang J, Hu Q, Xiao T, et al. Energy efficiency modeling, process parameter optimization and sequencing modeling optimization of cold rolling continuous annealing units based on energy consumptions. Chin Mech Eng, 2020, 31(14): 1724 doi: 10.3969/j.issn.1004-132X.2020.14.012楊杰, 胡琦, 肖亭, 等. 基于能耗的冷軋連退機組能效建模與工藝參數優化及排序建模優化. 中國機械工程, 2020, 31(14):1724 doi: 10.3969/j.issn.1004-132X.2020.14.012 [3] Zhang Y P, Ling C, Zhou J B, et al. Energy consumption and optimize circulate of air separation unit of steel corporation. Energy Metall Ind, 2014, 33(5): 6 doi: 10.3969/j.issn.1001-1617.2014.05.002張延平, 凌晨, 周建波, 等. 鋼鐵企業大型空分的能耗分析與經濟運行. 冶金能源, 2014, 33(5):6 doi: 10.3969/j.issn.1001-1617.2014.05.002 [4] Tong L G, Zhang A J, Li Y L, et al. Exergy and energy analysis of a load regulation method of CVO of air separation unit. Appl Therm Eng, 2015, 80: 413 [5] Zhang Q Q, Zhao J, Sheng C Y, et al. A two-stage adjustment method for the balance of the oxygen system in steel and iron enterprises. Control Eng China, 2017, 24(4): 716張乾乾, 趙珺, 盛春陽, 等. 一種兩階段鋼鐵企業氧氣系統平衡調整方法. 控制工程, 2017, 24(4):716 [6] Lu H, Sun P. Steel enterprises based on the wireless sensor network oxygen real-time optimization scheduling. Comput Eng Software, 2018, 39(5): 129 doi: 10.3969/j.issn.1003-6970.2018.05.028盧宏, 孫鵬. 鋼鐵企業基于無線傳感網的氧氣實時優化調度. 軟件, 2018, 39(5):129 doi: 10.3969/j.issn.1003-6970.2018.05.028 [7] Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking?continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144 [8] Zheng P, Tang Q H, Zhang Q M, et al. Discrete particle swarm optimization for steelmaking and continuous casting production. Mach Des Manuf, 2016(7): 49 doi: 10.3969/j.issn.1001-3997.2016.07.013鄭鵬, 唐秋華, 張啟敏, 等. 基于離散粒子群算法的煉鋼連鑄生產調度. 機械設計與制造, 2016(7):49 doi: 10.3969/j.issn.1001-3997.2016.07.013 [9] Zhang P K, Wang L. Effects of oxygen pipe-network pressure on the oxygen scheduling during blast furnace blow-down. Chin J Eng, 2017, 39(2): 283張培昆, 王立. 高爐休風時供氧管網壓力對氧氣調度的影響. 工程科學學報, 2017, 39(2):283 [10] Zhang Z Y, Sun Y G, Ma Y. Based on the improved simplex method of iron and steel enterprise oxygen system optimization scheduling research. Math Pract Theory, 2018, 48(23): 189張子陽, 孫彥廣, 馬湧. 基于改進單純形法的鋼鐵企業氧氣系統優化調度研究. 數學的實踐與認識, 2018, 48(23):189 [11] Tong L G, Wang L, Tang X Z, et al. Model of blast furnace blow down for oxygen releasing rate. Energy Metall Ind, 1999, 18(3): 16童莉葛, 王立, 湯學忠, 等. 降低氧氣放散率的高爐休風模型. 冶金能源, 1999, 18(3):16 [12] Chen G, Lu Z W, Cai J J, et al. Dynamic simulation of oxygen supply system in iron and steel company. J Northeast Univ Nat Sci, 2002, 23(10): 940陳光, 陸鐘武, 蔡九菊, 等. 鋼鐵企業氧氣系統動態仿真. 東北大學學報(自然科學版), 2002, 23(10):940 [13] Zheng Z, Zhu D F, Gao X Q. Production planning based on an ant colony algorithm for steel-making and continuous casting. J Univ Sci Technol Beijing, 2009, 31(4): 504 doi: 10.3321/j.issn:1001-053X.2009.04.019鄭忠, 朱道飛, 高小強. 基于蟻群算法的煉鋼-連鑄作業計劃編制方法. 北京科技大學學報, 2009, 31(4):504 doi: 10.3321/j.issn:1001-053X.2009.04.019 [14] Wang J C, Li Q, Cui J R, et al. An improved artificial bee colony algorithm: particle bee colony. Chin J Eng, 2018, 40(7): 871王繼超, 李擎, 崔家瑞, 等. 一種改進的人工蜂群算法——粒子蜂群算法. 工程科學學報, 2018, 40(7):871 [15] Zhang Z, Cao L L, Lin W H, et al. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method. Chin J Eng, 2019, 41(8): 1052張壯, 曹玲玲, 林文輝, 等. 基于IPSO-RELM轉爐冶煉終點錳含量預測模型. 工程科學學報, 2019, 41(8):1052 [16] Zhang P K, Wang L. Effects of temporary shutdown time-threshold on oxygen production schedule in air separation unit. CIESC J, 2017, 68(6): 2423張培昆, 王立. 空分短期停車時間閾值對氧氣生產調度的影響. 化工學報, 2017, 68(6):2423 [17] Li S, Zheng X M, Ma A Y, et al. Construction and application of activity models for CaO?SiO2?Al2O3?TiO2 slag system. Rare Mrtals, 2020, 44(5): 540李松, 鄭雪梅, 馬愛元, 等. CaO?SiO2?Al2O3?TiO2渣系活度計算模型的建立及應用. 稀有金屬, 2020, 44(5):540 [18] Xu G, Li M, Xu J W, et al. Control technology of end-point carbon in converter steelmaking based on functional digital twin model. Chin J Eng, 2019, 41(4): 52徐鋼, 黎敏, 徐金梧, 等. 基于函數型數字孿生模型的轉爐煉鋼終點碳控制技術. 工程科學學報, 2019, 41(4):52 [19] Pang X F, Gao L, Pan Q K, et al. Rescheduling method of steelmaking and continuous casting with breakdown of converter or refining furnace. Control Decis, 2015, 30(11): 1921龐新富, 高亮, 潘全科, 等. 某一轉爐或精煉爐故障下煉鋼?連鑄生產重調度方法及應用. 控制與決策, 2015, 30(11):1921 [20] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50439—2015 Code for Design of Steelmaking Engineering. Beijing: China Planning Press, 2015中華人民共和國住房和城鄉建設. GB50439—2015 煉鋼工程設計規范. 北京: 中國計劃出版社, 2015 [21] Kennedy J, Eberhart R. Particle swarm optimization//Proceeding of ICNN’95-IEEE International Conference on Neural Networks. Perth, 1995: 1942 [22] Liu Y, Yi S. Optimization of a wind power time series prediction model based on a two-parameter least squares support vector machine. J Beijing Univ Chem Technol, 2019, 46(02): 97劉云, 易松. 基于雙參數最小二乘支持向量機(TPA-LSSVM)的風電時間序列預測模型的優化研究. 北京化工大學學報(自然科學版), 2019, 46(02):97 [23] Xiong W T, Yu B J, Sun L. Improved particle swarm optimization of rolling schedule on 1420 mm 5-stand tandem cold strip mill. J Iron Steel Res, 2014, 26(11): 25熊文濤, 禹寶軍, 孫林. 改進粒子群算法對1420 mm五機架冷連軋機軋制規程的優化. 鋼鐵研究學報, 2014, 26(11):25 [24] Khare A, Rangekar S. A review of particle swarm optimization and its applications in Solar Photovoltaic system. Appl Soft Comput, 2013, 13(5): 2997 [25] Yang H, Zhang L. Application of PIPELINE STUDIO to simulation and analysis of pepe network. Nat Gas Explor Dev, 2015, 38(3): 91 doi: 10.3969/j.issn.1673-3177.2015.03.021楊桓, 張理. PIPELINE STUDIO軟件在管網模擬分析中的應用. 天然氣勘探與開發, 2015, 38(3):91 doi: 10.3969/j.issn.1673-3177.2015.03.021 [26] Lan Y J, Zhang L, Song D S Y, et al. The discussion of gas storage and peak shaving methods between Pipeline Studio and SPS. Petrochem Ind Technol, 2015, 22(5): 22 doi: 10.3969/j.issn.1006-0235.2015.05.013蘭宇劍, 章磊, 宋代詩雨, 等. Pipeline Studio與SPS計算長輸管道儲氣調峰探討. 石化技術, 2015, 22(5):22 doi: 10.3969/j.issn.1006-0235.2015.05.013 [27] Li H Y, Yu J J, Jin X D. Application of PL studio for gas software to simulation of gas pipeline network. Gas Heat, 2016, 36(7): 75李宏陽, 玉建軍, 靳新迪. PL Studio for Gas 軟件在燃氣管網模擬的應用. 煤氣與熱力, 2016, 36(7):75 [28] Chen F, Li R Z, Wei L B, et al. Analysis of the energy-saving potential and the reform effects of air separation plant. Cryogenic Technol, 2014(5): 1陳芳, 李瑞珍, 魏蘭波, 等. 空分設備節能潛力及改造效果分析. 深冷技術, 2014(5):1 [29] Wang H, Su Y T, Lü Y C. Optimization for performance curves of compressor. Compressor Technol, 2019(6): 13王輝, 宿彥通, 呂義超. 壓縮機性能曲線優化. 壓縮機技術, 2019(6):13 -