<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

應變幅對H13熱作模具鋼等溫疲勞行為的影響

朱振強 寧輝 左鵬鵬 吳曉春

朱振強, 寧輝, 左鵬鵬, 吳曉春. 應變幅對H13熱作模具鋼等溫疲勞行為的影響[J]. 工程科學學報, 2021, 43(5): 656-662. doi: 10.13374/j.issn2095-9389.2020.04.01.003
引用本文: 朱振強, 寧輝, 左鵬鵬, 吳曉春. 應變幅對H13熱作模具鋼等溫疲勞行為的影響[J]. 工程科學學報, 2021, 43(5): 656-662. doi: 10.13374/j.issn2095-9389.2020.04.01.003
ZHU Zhen-qiang, NING Hui, ZUO Peng-peng, WU Xiao-chun. Effect of strain amplitude on the isothermal fatigue behavior of H13 hot work die steel[J]. Chinese Journal of Engineering, 2021, 43(5): 656-662. doi: 10.13374/j.issn2095-9389.2020.04.01.003
Citation: ZHU Zhen-qiang, NING Hui, ZUO Peng-peng, WU Xiao-chun. Effect of strain amplitude on the isothermal fatigue behavior of H13 hot work die steel[J]. Chinese Journal of Engineering, 2021, 43(5): 656-662. doi: 10.13374/j.issn2095-9389.2020.04.01.003

應變幅對H13熱作模具鋼等溫疲勞行為的影響

doi: 10.13374/j.issn2095-9389.2020.04.01.003
基金項目: 國家重點研發計劃資助項目(2016YFB0300400, 2016YFB0300404)
詳細信息
    通訊作者:

    E-mail: wuxiaochun@shu.edu.cn

  • 中圖分類號: TG142.1

Effect of strain amplitude on the isothermal fatigue behavior of H13 hot work die steel

More Information
  • 摘要: 對H13熱作模具鋼試樣進行600 ℃等溫疲勞實驗,通過顯微維氏硬度計、金相顯微鏡(OM)、超景深顯微鏡和掃描電子顯微鏡(SEM)等設備研究了0.7%,0.9%和1.1%三種不同應變幅對疲勞行為的影響。結果表明:應力應變滯后回線呈現對稱性,應變幅越大,滯回環面積越大。H13鋼在實驗中呈現循環軟化的特征,應變幅越大,疲勞壽命越短,1.1%應變幅試樣壽命約為0.7%應變幅試樣的61.2%。應變幅的增加對裂紋萌生和擴展起促進作用,1.1%應變幅試樣裂紋擴展最明顯。高溫非真空實驗條件下,材料表面產生的氧化物也會促進裂紋擴展。疲勞后試樣微觀組織發生明顯的長大和粗化,較大應變幅對碳化物析出有更大的助力,還會加速材料軟化。有應變幅試樣顯微硬度遠低于無應變幅試樣。

     

  • 圖  1  試樣尺寸與形狀[3]

    Figure  1.  Size and shape of the specimen

    A—axial datum; B—radial datum; R—radius; d—diameter

    圖  2  循環應力響應曲線

    Figure  2.  Cyclic stress response curves

    圖  3  應力–機械應變滯后回線。(a)Δεm/2=1.1%;(b)Δεm/2=0.9%;(c)Δεm/2=0.7%

    Figure  3.  Stress–strain hysteresis loops: (a) Δεm/2=1.1%; (b) Δεm/2=0.9%; (c) Δεm/2=0.7%

    圖  4  試樣表面裂紋形貌。(a)?εm/2=1.1%;(b)?εm/2=0.9%;(c)?εm/2=0.7%

    Figure  4.  Crack morphology of the specimen surface: (a) ?εm/2=1.1%; (b) ?εm/2=0.9%; (c) ?εm/2=0.7%

    圖  5  試樣表面氧化。(a)?εm/2=0.7%;(b)?εm/2=0.9%;(c)?εm/2=1.1%

    Figure  5.  Oxidation of the specimen surface: (a) ?εm/2=0.7%; (b) ?εm/2=0.9%; (c) ?εm/2=1.1%

    圖  6  疲勞前后組織。(a)淬回火試樣;(b)Δεm/2=0.7%

    Figure  6.  Microstructure before and after isothermal fatigue: (a) specimen after quenching and tempering; (b) Δεm/2 = 0.7%

    圖  7  不同應變幅和對應無應變幅疲勞組織。(a)Δεm/2=0(18.6 h);(b) Δεm/2=0(13.1 h);(c)Δεm/2=0(11.4 h);(d)Δεm/2=0.7%(18.6 h);(e)Δεm/2=0.9%(13.1 h);(f)Δεm/2=1.1%(11.4 h)

    Figure  7.  Isothermal fatigue microstructure with and without strain amplitude: (a) Δεm/2=0(18.6 h); (b) Δεm/2=0(13.1 h); (c)Δεm/2=0(11.4 h); (d) Δεm/2=0.7%(18.6 h); (e) Δεm/2=0.9%(13.1 h); (f) Δεm/2=1.1%(11.4 h)

    圖  8  不同應變幅試樣碳化物數量和平均直徑

    Figure  8.  Number and average diameter of carbides in samples with different strain amplitudes

    圖  9  等溫疲勞試樣顯微硬度

    Figure  9.  Microhardness of isothermal fatigue specimen

    表  1  H13鋼化學成分(質量分數)

    Table  1.   Chemical composition of H13 hot work die steel %

    CSiMnCrMoVNiPSFe
    0.380.950.355.331.410.990.150.0100.002Bal.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Srivastava A, Joshi V, Shivpuri R. Computer modeling and prediction of thermal fatigue cracking in die-casting tooling. Wear, 2004, 256(1-2): 38 doi: 10.1016/S0043-1648(03)00281-3
    [2] Hawryluk M, Dolny A, Mroziński S. Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures. Arch Civil Mech Eng, 2018, 18(2): 465 doi: 10.1016/j.acme.2017.08.002
    [3] Zuo P P, Wu X C, Zeng Y, et al. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel. Chin J Eng, 2018, 40(1): 76

    左鵬鵬, 吳曉春, 曾艷, 等. 基于應變控制的4Cr5MoSiV1熱作模具鋼熱機械疲勞行為. 工程科學學報, 2018, 40(1):76
    [4] Salem M, Le Roux S, Dour G, et al. Effect of aluminizing and oxidation on the thermal fatigue damage of hot work tool steels for high pressure die casting applications. Int J Fatigue, 2019, 119: 126 doi: 10.1016/j.ijfatigue.2018.09.018
    [5] Bomba? D, Gintalas M, Kugler G, et al. Thermal fatigue behaviour of Fe-1.7C-11.3Cr-1.9Ni-1.2Mo roller steel in temperature range 500–700 ℃. Int J Fatigue, 2019, 121: 98 doi: 10.1016/j.ijfatigue.2018.12.007
    [6] Lu Y, Ripplinger K, Huang X J, et al. A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting. J Mater Process Technol, 2019, 271: 444 doi: 10.1016/j.jmatprotec.2019.04.023
    [7] Liu B, Wang B, Yang X D, et al. Thermal fatigue evaluation of AISI H13 steels surface modified by gas nitriding with pre- and post-shot peening. Appl Surf Sci, 2019, 483: 45 doi: 10.1016/j.apsusc.2019.03.291
    [8] Ghusoon R M, Rawaa H M, Basim H A. Effect of die geometry on thermal fatigue of tool steel in aluminium alloy die-casting. IOP Conf Ser Mater Sci Eng, 2019, 518(3): 032042
    [9] Girisha V A, Joshi M M, Kirthan L J, et al. Thermal fatigue analysis of H13 steel die adopted in pressure-die-casting process. Sādhanā, 2019, 44: 148
    [10] Meng C, Wu C, Wang X L, et al. Effect of thermal fatigue on microstructure and mechanical properties of H13 tool steel processed by selective laser surface melting. Metals, 2019, 9(7): 773 doi: 10.3390/met9070773
    [11] Wu X C, Xu L P. Quantitative analysis and evaluation of the Uddeholm heat-checking scale. Phys Test Chem Anal Part A, 2002, 38(1): 14

    吳曉春, 許珞萍. Uddeholm熱疲勞圖譜的分析與定量評定. 理化檢驗–物理分冊, 2002, 38(1):14
    [12] Ma Y, Wang H, Chai X, et al. Thermal fatigue behavior of HHD hot work tool steel with structures. Mater Sci Eng Technol, 2018, 49(12): 1494
    [13] Zuo P P, Wu X C, Zeng Y, et al. In-phase and out-of-phase thermomechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel cycling from 400 ℃ to 700 ℃. Fatigue Fract Eng Mater Struct, 2018, 41(1): 159 doi: 10.1111/ffe.12669
    [14] Grüning A, Lebsanft M, Scholtes B. Isothermal and thermal fatigue of tool steel AISI H11. Mater Sci Forum, 2010, 638-642: 3230 doi: 10.4028/www.scientific.net/MSF.638-642.3230
    [15] Grüning A, Krauβ M, Scholtes B. Isothermal fatigue of tool steel AISI H11. Steel Res Int, 2008, 79(2): 111 doi: 10.1002/srin.200806325
    [16] Wang H Q. The relationship between stress control and strain control in the field of low cycle fatigue. J Mater Eng, 1983(4): 17

    王海清. 低周疲勞領域中應力控制與應變控制的關系. 材料工程, 1983(4):17
    [17] Wang Y Q, Du W Q, Luo Y X. A mean plastic strain fatigue-creep life prediction and reliability analysis of AISI H13 based on energy method. J Mater Res, 2017, 32(22): 4254 doi: 10.1557/jmr.2017.385
    [18] Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13. Int J Miner Metall Mater, 2017, 24(9): 1004 doi: 10.1007/s12613-017-1489-z
    [19] Wang M, Wu Y, Wei Q S, et al. Thermal fatigue properties of H13 hot-work tool steels processed by selective laser melting. Metals, 2020, 10(1): 116 doi: 10.3390/met10010116
    [20] Zuo P P. Research on Thermomechanical Fatigue Behavior and Damage Mechanism of Die-Casting Die Steel[Dissertation]. Shanghai: Shanghai University, 2018

    左鵬鵬. 壓鑄模具鋼熱機械疲勞行為及損傷機理研究[學位論文]. 上海: 上海大學, 2018
    [21] Jiang Q C, Zhao X M, Qiu F, et al. The relationship between oxidation and thermal fatigue of martensitic hot-work die steels. Acta Metall Sin (Engl Lett), 2018, 31(7): 692 doi: 10.1007/s40195-017-0699-8
    [22] Reger M, RéMY L. Fatigue oxidation interaction in in 100 superalloy. Metall Trans A, 1988, 19(9): 2259 doi: 10.1007/BF02645049
    [23] Tong Q, Wu X C, Zhou Q C, et al. Thermal fatigue mechanism of SDH3 hot work steel. Trans Mater Heat Treat, 2010, 31(5): 81

    佟倩, 吳曉春, 周青春, 等. 熱作模具鋼SDH3熱疲勞機理. 材料熱處理學報, 2010, 31(5):81
    [24] Qian L H, Wang Z G, Toda H, et al. High temperature low cycle fatigue and thermo-mechanical fatigue of a 6061Al reinforced with SiCW. Mater Sci Eng A, 2000, 291(1-2): 235 doi: 10.1016/S0921-5093(00)00892-3
    [25] Neu R W. Crack paths in single-crystal Ni-base superalloys under isothermal and thermomechanical fatigue. Int J Fatigue, 2019, 123: 268 doi: 10.1016/j.ijfatigue.2019.02.022
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  2469
  • HTML全文瀏覽量:  666
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-04-01
  • 刊出日期:  2021-05-25

目錄

    /

    返回文章
    返回