Effect of strain amplitude on the isothermal fatigue behavior of H13 hot work die steel
-
摘要: 對H13熱作模具鋼試樣進行600 ℃等溫疲勞實驗,通過顯微維氏硬度計、金相顯微鏡(OM)、超景深顯微鏡和掃描電子顯微鏡(SEM)等設備研究了0.7%,0.9%和1.1%三種不同應變幅對疲勞行為的影響。結果表明:應力應變滯后回線呈現對稱性,應變幅越大,滯回環面積越大。H13鋼在實驗中呈現循環軟化的特征,應變幅越大,疲勞壽命越短,1.1%應變幅試樣壽命約為0.7%應變幅試樣的61.2%。應變幅的增加對裂紋萌生和擴展起促進作用,1.1%應變幅試樣裂紋擴展最明顯。高溫非真空實驗條件下,材料表面產生的氧化物也會促進裂紋擴展。疲勞后試樣微觀組織發生明顯的長大和粗化,較大應變幅對碳化物析出有更大的助力,還會加速材料軟化。有應變幅試樣顯微硬度遠低于無應變幅試樣。Abstract: Thermal fatigue cracking is the main failure mode of hot work die steel during die casting and hot forging. Thermal fatigue cracking accounts for a large proportion of mold failures and seriously affects the service life of the mold. Because of the high maintenance and replacement costs, thermal fatigue failure will cause substantial financial losses to the enterprise. Therefore, analyzing the fatigue behavior of hot work die steel at high temperatures is of significance in scientific research and engineering applications. H13 hot work die steel is widely used in die casting and hot forging because of its excellent high-temperature performance and toughness. In this study, a 600 ℃ isothermal fatigue test was conducted on H13 hot work die steel samples. The effect of three different strain amplitudes of 0.7%, 0.9%, and 1.1% on the isothermal fatigue behavior was analyzed using a micro Vickers hardness tester, metallographic microscope, microscope with a superwide depth of field, and scanning electron microscope. Results show that the stress–strain hysteresis loop is symmetric. The larger the strain amplitude is, the larger the area of the hysteresis loop. H13 hot work die steel exhibits the cyclic softening behavior during the experiment. The larger the strain amplitude, shorter is the fatigue life. The fatigue life of the sample with the strain amplitude of 1.1% is approximately 61.2% of that of the sample with the strain amplitude of 0.7%. The increase in the strain amplitude promotes the initiation and propagation of cracks, and the propagation of cracks on the sample with the strain amplitude of 1.1% is the most obvious. Under high-temperature and non-vacuum experimental conditions, oxide on the surface of the material promotes crack growth. The microstructure of the sample under isothermal fatigue grows and coarsens. The large strain amplitude not only supports carbide precipitation but also accelerates cyclic softening of the material. The microhardness of samples with strain amplitude is lower than that of samples without strain amplitude.
-
Key words:
- H13 hot work die steel /
- isothermal fatigue /
- fatigue behavior /
- strain /
- carbide
-
圖 1 試樣尺寸與形狀[3]
Figure 1. Size and shape of the specimen
A—axial datum; B—radial datum; R—radius; d—diameter
圖 7 不同應變幅和對應無應變幅疲勞組織。(a)Δεm/2=0(18.6 h);(b) Δεm/2=0(13.1 h);(c)Δεm/2=0(11.4 h);(d)Δεm/2=0.7%(18.6 h);(e)Δεm/2=0.9%(13.1 h);(f)Δεm/2=1.1%(11.4 h)
Figure 7. Isothermal fatigue microstructure with and without strain amplitude: (a) Δεm/2=0(18.6 h); (b) Δεm/2=0(13.1 h); (c)Δεm/2=0(11.4 h); (d) Δεm/2=0.7%(18.6 h); (e) Δεm/2=0.9%(13.1 h); (f) Δεm/2=1.1%(11.4 h)
表 1 H13鋼化學成分(質量分數)
Table 1. Chemical composition of H13 hot work die steel
% C Si Mn Cr Mo V Ni P S Fe 0.38 0.95 0.35 5.33 1.41 0.99 0.15 0.010 0.002 Bal. 259luxu-164 -
參考文獻
[1] Srivastava A, Joshi V, Shivpuri R. Computer modeling and prediction of thermal fatigue cracking in die-casting tooling. Wear, 2004, 256(1-2): 38 doi: 10.1016/S0043-1648(03)00281-3 [2] Hawryluk M, Dolny A, Mroziński S. Low cycle fatigue studies of WCLV steel (1.2344) used for forging tools to work at higher temperatures. Arch Civil Mech Eng, 2018, 18(2): 465 doi: 10.1016/j.acme.2017.08.002 [3] Zuo P P, Wu X C, Zeng Y, et al. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel. Chin J Eng, 2018, 40(1): 76左鵬鵬, 吳曉春, 曾艷, 等. 基于應變控制的4Cr5MoSiV1熱作模具鋼熱機械疲勞行為. 工程科學學報, 2018, 40(1):76 [4] Salem M, Le Roux S, Dour G, et al. Effect of aluminizing and oxidation on the thermal fatigue damage of hot work tool steels for high pressure die casting applications. Int J Fatigue, 2019, 119: 126 doi: 10.1016/j.ijfatigue.2018.09.018 [5] Bomba? D, Gintalas M, Kugler G, et al. Thermal fatigue behaviour of Fe-1.7C-11.3Cr-1.9Ni-1.2Mo roller steel in temperature range 500–700 ℃. Int J Fatigue, 2019, 121: 98 doi: 10.1016/j.ijfatigue.2018.12.007 [6] Lu Y, Ripplinger K, Huang X J, et al. A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting. J Mater Process Technol, 2019, 271: 444 doi: 10.1016/j.jmatprotec.2019.04.023 [7] Liu B, Wang B, Yang X D, et al. Thermal fatigue evaluation of AISI H13 steels surface modified by gas nitriding with pre- and post-shot peening. Appl Surf Sci, 2019, 483: 45 doi: 10.1016/j.apsusc.2019.03.291 [8] Ghusoon R M, Rawaa H M, Basim H A. Effect of die geometry on thermal fatigue of tool steel in aluminium alloy die-casting. IOP Conf Ser Mater Sci Eng, 2019, 518(3): 032042 [9] Girisha V A, Joshi M M, Kirthan L J, et al. Thermal fatigue analysis of H13 steel die adopted in pressure-die-casting process. Sādhanā, 2019, 44: 148 [10] Meng C, Wu C, Wang X L, et al. Effect of thermal fatigue on microstructure and mechanical properties of H13 tool steel processed by selective laser surface melting. Metals, 2019, 9(7): 773 doi: 10.3390/met9070773 [11] Wu X C, Xu L P. Quantitative analysis and evaluation of the Uddeholm heat-checking scale. Phys Test Chem Anal Part A, 2002, 38(1): 14吳曉春, 許珞萍. Uddeholm熱疲勞圖譜的分析與定量評定. 理化檢驗–物理分冊, 2002, 38(1):14 [12] Ma Y, Wang H, Chai X, et al. Thermal fatigue behavior of HHD hot work tool steel with structures. Mater Sci Eng Technol, 2018, 49(12): 1494 [13] Zuo P P, Wu X C, Zeng Y, et al. In-phase and out-of-phase thermomechanical fatigue behavior of 4Cr5MoSiV1 hot work die steel cycling from 400 ℃ to 700 ℃. Fatigue Fract Eng Mater Struct, 2018, 41(1): 159 doi: 10.1111/ffe.12669 [14] Grüning A, Lebsanft M, Scholtes B. Isothermal and thermal fatigue of tool steel AISI H11. Mater Sci Forum, 2010, 638-642: 3230 doi: 10.4028/www.scientific.net/MSF.638-642.3230 [15] Grüning A, Krauβ M, Scholtes B. Isothermal fatigue of tool steel AISI H11. Steel Res Int, 2008, 79(2): 111 doi: 10.1002/srin.200806325 [16] Wang H Q. The relationship between stress control and strain control in the field of low cycle fatigue. J Mater Eng, 1983(4): 17王海清. 低周疲勞領域中應力控制與應變控制的關系. 材料工程, 1983(4):17 [17] Wang Y Q, Du W Q, Luo Y X. A mean plastic strain fatigue-creep life prediction and reliability analysis of AISI H13 based on energy method. J Mater Res, 2017, 32(22): 4254 doi: 10.1557/jmr.2017.385 [18] Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13. Int J Miner Metall Mater, 2017, 24(9): 1004 doi: 10.1007/s12613-017-1489-z [19] Wang M, Wu Y, Wei Q S, et al. Thermal fatigue properties of H13 hot-work tool steels processed by selective laser melting. Metals, 2020, 10(1): 116 doi: 10.3390/met10010116 [20] Zuo P P. Research on Thermomechanical Fatigue Behavior and Damage Mechanism of Die-Casting Die Steel[Dissertation]. Shanghai: Shanghai University, 2018左鵬鵬. 壓鑄模具鋼熱機械疲勞行為及損傷機理研究[學位論文]. 上海: 上海大學, 2018 [21] Jiang Q C, Zhao X M, Qiu F, et al. The relationship between oxidation and thermal fatigue of martensitic hot-work die steels. Acta Metall Sin (Engl Lett) , 2018, 31(7): 692 doi: 10.1007/s40195-017-0699-8 [22] Reger M, RéMY L. Fatigue oxidation interaction in in 100 superalloy. Metall Trans A, 1988, 19(9): 2259 doi: 10.1007/BF02645049 [23] Tong Q, Wu X C, Zhou Q C, et al. Thermal fatigue mechanism of SDH3 hot work steel. Trans Mater Heat Treat, 2010, 31(5): 81佟倩, 吳曉春, 周青春, 等. 熱作模具鋼SDH3熱疲勞機理. 材料熱處理學報, 2010, 31(5):81 [24] Qian L H, Wang Z G, Toda H, et al. High temperature low cycle fatigue and thermo-mechanical fatigue of a 6061Al reinforced with SiCW. Mater Sci Eng A, 2000, 291(1-2): 235 doi: 10.1016/S0921-5093(00)00892-3 [25] Neu R W. Crack paths in single-crystal Ni-base superalloys under isothermal and thermomechanical fatigue. Int J Fatigue, 2019, 123: 268 doi: 10.1016/j.ijfatigue.2019.02.022 -