Production technology and welding properties of high heat input welding EH420 offshore steel
-
摘要: 河鋼集團有限公司開發了利用鋼液中形成TiOx?MgO?CaO細小粒子改善焊接粗晶熱影響區韌性的ITFFP技術(Improve the toughness of HAZ by forming TiOx?MgO?CaO fine particles in steel),成功試制生產出大線能量焊接用30 mm厚度規格(H30)和60 mm厚度規格(H60)EH420海洋工程用鋼。母材力學性能試驗結果表明,H30和H60試制鋼屈服強度分別達到461 MPa和534 MPa,抗拉強度分別達到570 MPa和628 MPa,延伸率分別為26%和24.5%,滿足EH420海洋工程用鋼國家標準要求。采用Gleeble-3800型熱模擬試驗機對試制鋼進行了200 kJ·cm?1條件下熱模擬試驗,并對焊接熱影響區中的顯微組織和?40 ℃沖擊韌性進行了分析和測試。結果表明,試制鋼中形成的CaO(?MgO)?Al2O3?TiOx?MnS夾雜物可以有效地誘導針狀鐵素體析出,顯著提高鋼材的沖擊韌性。另外,利用氣電立焊設備對H30和H60試制鋼分別進行了焊接線能量為247 kJ·cm?1和224 kJ·cm?1的實焊試驗,結果顯示,H30試制鋼焊接接頭表面和根部焊縫處?40 ℃沖擊吸收功值≥74 J,焊接熱影響區≥115 J,H60試制鋼焊接接頭表面和根部焊縫處?40 ℃沖擊吸收功值≥91 J,焊接熱影響區≥75 J,焊接接頭的沖擊性能遠高于國家標準值42 J。Abstract: Extensive efforts have been made to remove “harmful” inclusions during the steelmaking process. However, the concept of “oxide metallurgy” was proposed, where fine inclusions are used to induce the formation of acicular ferrite and pin the grain boundary, thus enhancing the low temperature toughness of the heat-affected zone (HAZ). The technology of improving the toughness of HAZ by forming TiOx?MgO?CaO fine particles (ITFFP) in steel has been successfully applied to the trial production of 30 mm (H30) and 60 mm (H60) thick high heat input welding EH420 offshore steel. The mechanical testing results show that the yield strength, tensile strength, and elongation of H30 steel are 461 MPa, 579 MPa, and 26%, respectively. In addition, the yield strength, tensile strength, and elongation of H60 steel are 534 MPa, 628 MPa, and 24.5%, respectively. The tested H30 and H60 steels achieved the national standard of EH420 offshore steel. The effect of ITFFP technology on the microstructure and impact toughness in the HAZ of H30 and H60 steels subjected to a 200 kJ·cm?1 heat input were investigated using a Gleeble-3800 welding simulation machine and Charpy impact tests. The results indicate that the CaO(?MgO)?Al2O3?TiOx?MnS formed in the tested steels induces the formation of acicular ferrite, and thus significantly improves the impact toughness. Additionally, electrode-gas welding with heat inputs of 247 kJ·cm?1 and 224 kJ·cm?1 was applied to H30 and H60 steels. The experimental results show that the impact absorbed energy of the weld in H30 tested steel is larger than 74 J at ?40 ℃, and the HAZ exhibits an absorbed energy larger than 115 J at ?40 ℃. In addition, the impact absorbed energy of the weld in H60 tested steel is larger than 91 J at ?40 ℃, and the HAZ exhibits an absorbed energy larger than 75 J at ?40 ℃. The impact absorbed energy of welded joints is much higher than the requirement of the national standard (42 J).
-
Key words:
- EH420 offshore steel /
- welding simulation /
- electrode-gas welding /
- inclusions /
- microstructure /
- mechanical properties
-
圖 3 H30試制鋼HAZ顯微組織和夾雜物關系(CAT:CaO?Al2O3?TiOx?MnS夾雜物,CMAT:CaO?MgO?Al2O3?TiOx?MnS夾雜物)。(a)H30試制鋼HAZ顯微組織;(b)H30試制鋼HAZ顯微組織示意圖;(c)P1夾雜物線掃描分析結果;(d)P2夾雜物面掃描分析結果
Figure 3. Relationships between the microstructures and inclusions of the HAZ in H30 tested steel (CAT: CaO?Al2O3?TiOx?MnS complex inclusions, CMAT:CaO?MgO?Al2O3?TiOx?MnS complex inclusion): (a) microstructure of the HAZ in H30 tested steel; (b) schematic diagram of the microstructure of the HAZ in H30 tested steel; (c) line scanning of P1 inclusion; (d) mapping scanning of P2 inclusion
表 1 試制鋼的化學成分(質量分數)
Table 1. Chemical compositions of tested steels
% Steel No. C Si Mn P S Al Cu Ni Cr B Ti Ca+Mg H30 0.077 0.15 1.55 0.0081 0.0033 0.0035 0.029 0.03 0.026 0.0007 0.008 ≤0.003 H60 0.091 0.14 1.53 0.0072 0.0037 0.0056 0.03 0.03 0.029 0.0007 0.008 ≤0.003 表 2 氣電立焊焊接參數
Table 2. Parameters during the electrode-gas welding process
Steel No. Weld type Bevel angle /
(°)Welding current Arc voltage /
VGas Welding speed/
(mm·min?1)Heat input /
(kJ·cm?1)Power type Current /A Type Flow rate / (L·min?1) H30 Single side EGW 30 DCEP 380 45 CO2 20 41.5 247 H60 Double side EGW 40 DCEP 410 50 CO2 20 54.9 224 表 3 試制鋼母材力學性能
Table 3. Mechanical properties at room temperature of tested steels
Steel No. Mechanical properties Yield strength /MPa Tensile strength /MPa Elongation /% Charpy impact energy at ?40 ℃ / J Value #1 Value #2 Value #3 Average value H30 461 570 26 325 352 337 338 H60 534 628 24.5 311 315 318 315 EH420 (GB/T 712—2011) ≥420 530?680 ≥18 ≥42 表 4 試制鋼200 kJ·cm?1焊接熱模擬后HAZ低溫沖擊吸收功
Table 4. Impact absorbed energy of the HAZ in tested steels after 200 kJ·cm?1 welding thermal simulation
Steel No. Heat input /
(kJ·cm?1)Charpy impact energy at ?40 ℃ / J Value #1 Value #2 Value #3 Average value H30 200 193 247 169 203 H60 128 183 92 135 259luxu-164 -
參考文獻
[1] Lei Y, Xu X F, Yu S F, et al. Present status and developmental direction of high performance structural material-oriented ultra-fine grained steel. J China Univ Pet Ed Nat Sci, 2007, 31(2): 155雷毅, 許曉鋒, 余圣甫, 等. 面向高性能結構材料的超細晶粒鋼研究現狀及發展方向. 中國石油大學學報: 自然科學版, 2007, 31(2):155 [2] Ding F B, Huang Y. Progress of the Chinese shipbuilding industry and welding technology. China Weld, 1994, 3(2): 105 [3] Xu L Y, Yang J, Wang R Z. Influence of Al content on the inclusion-microstructure relationship in the heat-affected zone of a steel plate with Mg deoxidation after high-heat-input welding. Metals, 2018, 8(12): 1027 doi: 10.3390/met8121027 [4] Cai Z Y, Kong H. Inclusion and microstructure characteristics in a steel sample with TiO2 nanoparticle addition and Mg treatment. Metals, 2019, 9(2): 171 doi: 10.3390/met9020171 [5] Li J, Wa ng, H, Qu S Y, et al. Effect of welding thermal cycle parameters on the microstructure and properties in the heat affected zone of steel EH40 for high heat input welding. J Univ Sci Technol Beijing, 2012, 34(7): 788李靜, 王華, 曲圣昱, 等. 焊接熱循環參數對大線能量焊接用鋼EH40熱影響區組織和性能的影響. 北京科技大學學報, 2012, 34(7):788 [6] Takamura J, Mizoguchi S. Roles of oxides in steel performance—Metallurgy of oxides in steels 1// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 591 [7] Mizoguchi S, Takamura J. Control of oxide as inculants—Metallurgy of oxides in steels 2// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 598 [8] Sawai T, Wakooh M, Ueshima Y, et al. Effect of Zr on the precipitation of MnS in low carbon steels—Metallurgy of oxides in steels 3// Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 605 [9] Ogibayashi S, Yamaguchi K, Hirai H, et al. The feature of oxides in Ti-deoxidized steel—Metallurgy of oxides in steel 4 // Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 612 [10] Shi M L, Duan G S. Application and progress of the oxides metallurgy technology. Henan Metall, 2010, 18(5): 1 doi: 10.3969/j.issn.1006-3129.2010.05.001史美倫, 段貴生. 氧化物冶金技術應用及進展. 河南冶金, 2010, 18(5):1 doi: 10.3969/j.issn.1006-3129.2010.05.001 [11] Nagahara M, Fukami H. 530 N/mm3 tensile strength grade steel plate for multi-purpose gas carrier. Nippon Steel Tech Rep, 2004, 5: 19 [12] Yang C F, Chai F, Su H. Study of ship hull steel for high heat input welding. Shanghai Met, 2010, 32(1): 1 doi: 10.3969/j.issn.1001-7208.2010.01.001楊才福, 柴鋒, 蘇航. 大線能量焊接船體鋼的研究. 上海金屬, 2010, 32(1):1 doi: 10.3969/j.issn.1001-7208.2010.01.001 [13] Kimura T, Sumi H, Kitani Y. High tensile strength steel plate and welding consumables for architectural construction with excellent toughness in welded joint. JFE Tech Rep, 2005, 5: 45 [14] Yang J, Zhu K, Wang C, et al. Progress in oxide metallurgy for development of steel plates for high heat input welding // Proceedings of the 15th Annual Meeting on Steelmaking. Xiamen, 2008: 568楊健, 祝凱, 王聰, 等. 改善厚板大線能量焊接性能的氧化物冶金的研究進展 // 第十五屆全國煉鋼學術會議論文集. 廈門, 2008: 568 [15] Fu K J, Ji Y M, Wang J J, et al. Research progress on hull structural steels by high heat input welding. Angang Technol, 2011(6): 7 doi: 10.3969/j.issn.1006-4613.2011.06.002付魁軍, 及玉梅, 王佳驥, 等. 大線能量焊接用船體結構鋼的研究進展. 鞍鋼技術, 2011(6):7 doi: 10.3969/j.issn.1006-4613.2011.06.002 [16] Shigeo O, Yoichiro K, Mitsuaki S, et al. 355?460 MPa yield point steel plates and welding consumables for large heat-input welding for giant container ships. Kobe Steel Eng Rep, 2002, 52(1): 2岡野重雄, 小林洋一郎, 柴田光明, 等. 大型コンテナ船用大入熱溶接型 YP355~460 MPa級鋼板及び溶接材料. 神戸製鋼技報, 2002, 52(1):2 [17] Zheng W, Liu L, Li G Q, et al. Refinement mechanisms of inclusions in steel by Ti?Mg complex deoxidation. Chin J Eng, 2015, 37(7): 873鄭萬, 劉磊, 李光強, 等. Ti?Mg復合脫氧鋼中夾雜物細化機制. 工程科學學報, 2015, 37(7):873 [18] Shen H J. Research on Control Technology for Super-Fine Inclusions in Low Carbon Steel[Dissertation]. Shenyang: Northeastern University, 2008沈海軍. 低碳鋼中超細夾雜物控制技術研究[學位論文]. 沈陽: 東北大學, 2008 [19] Wang B X, Wu Z Z, Lou H N, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel. J Iron Steel Res, 2019, 31(2): 239王丙興, 武仲子, 婁號南, 等. 氧化物冶金工藝對EH36鋼HAZ組織性能的影響. 鋼鐵研究學報, 2019, 31(2):239 [20] Deng X X, Wang X H, Jiang M, et al. Effect of inclusions on the formation of intra-granular acicular ferrite in steels containing rare earth elements. J Univ Sci Technol Beijing, 2012, 34(5): 535鄧小旋, 王新華, 姜敏, 等. 稀土處理鋼中夾雜物對晶內針狀鐵素體形成的影響. 北京科技大學學報, 2012, 34(5):535 [21] Zhang P, Wang X S, Long J, et al. Development and microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships // Proceedings of the Twenty-eighth International Ocean and Polar Engineering Conference. Sapporo, 2018: 1569 [22] Zhu K, Yang J, Wang R Z, et al. Effect of Mg addition on inhibiting austenite grain growth in heat affected zones of Ti-bearing low carbon steels. J Iron Steel Res Int, 2011, 18(9): 60 doi: 10.1016/S1006-706X(12)60035-1 [23] Wang B X, Zhu F X, Wang C, et al. Application of oxide metallurgy in high heat input welding steels. Iron Steel, 2019, 54(9): 12王丙興, 朱伏先, 王超, 等. 氧化物冶金在大線能量焊接用鋼中的應用. 鋼鐵, 2019, 54(9):12 [24] Li W X, Guo H Y, Chen G, et al. Microstructure and properties of FCB weld joint of shipbuilding steel EH36 for high heat input welding. Electr Weld Mach, 2017, 47(8): 1李文曉, 郭慧英, 陳剛, 等. 大線能量焊接EH36船板鋼FCB焊接接頭組織與性能. 電焊機, 2017, 47(8):1 [25] Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int, 1995, 35(8): 1027 doi: 10.2355/isijinternational.35.1027 [26] Wang C. Microstructure and Properties Control of Oxide Metallurgical Steels for High Heat Input Welding and Its Production Technology Research[Dissertation]. Shenyang: Northeastern University, 2017王超. 氧化物冶金型大線能量焊接用鋼組織性能調控與生產工藝研究[學位論文]. 沈陽: 東北大學, 2017 [27] Lou H N, Wang C, Wang B X, et al. Inclusion evolution behavior of Ti?Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals, 2018, 8(7): 534 doi: 10.3390/met8070534 [28] Kim Y M, Lee H, Kim N J. Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Mater Sci Eng A, 2008, 478(1-2): 361 doi: 10.1016/j.msea.2007.06.035 [29] Sung H K, Sang S Y, Cha W, et al. Effects of acicular ferrite on charpy impact properties in heat affected zones of oxide-containing API X80 linepipe steels. Mater Sci Eng A, 2011, 528(9): 3350 doi: 10.1016/j.msea.2011.01.031 [30] Li Y Y, Wu M F, Pu J. Study on microstructure and mechanical properties of FAB submerged arc weld for DH36 ship plate with different thickness. Hot Work Technol, 2017, 46(7): 232李遠遠, 吳銘方, 浦娟. 不同厚度DH36船用板FAB埋弧焊縫微觀組織及力學性能研究. 熱加工工藝, 2017, 46(7):232 [31] Shu W, Wang X M, Li S R, et al. Nucleation and growth of intergranular acicular ferrite and its effect on grain refinement of the heat-affected-zone. Acta Metall Sinica, 2011, 47(4): 435舒瑋, 王學敏, 李書瑞, 等. 焊接熱影響區針狀鐵素體的形核長大及其對組織的細化作用. 金屬學報, 2011, 47(4):435 [32] Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel. Acta Mater., 1999, 47(9): 2751 doi: 10.1016/S1359-6454(99)00114-7 [33] Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406 [34] Zhuo X J, Wang Y Q, Wang X H, et al. Thermodynamic calculation and MnS solubility of Mn?Ti oxide formation in Si?Mn?Ti deoxidized steel. J Iron Steel Res Int, 2010, 17(2): 10 doi: 10.1016/S1006-706X(10)60051-9 -