Dynamic response characteristics of an offshore, wind-power monopile foundation in heterogeneous soil
-
摘要: 采用有限元分析軟件ABAQUS建立了非均質土中海上風電單樁基礎數值計算模型,將樁基礎受到的波浪、洋流及風荷載等效成雙向對稱循環荷載,對水平循環荷載作用下樁身水平位移、樁身剪力、樁身彎矩和樁側土抗力進行了研究,并對不同循環次數下樁身水平位移進行了對比分析。研究表明,樁身水平位移隨時間變化逐漸累積,隨著循環次數的增加,泥面處樁身最大位移發生的時間點滯后;樁身剪力出現負值;樁身彎矩最大值發生在淺層土體;樁身外壁土抗力曲線隨時間的變化在埋深約2/3處出現分界點,分界點上下范圍內土抗力變化規律正好相反,在淤泥土和粉砂土分界面處增加顯著;不同時間點樁身內壁沿埋深承擔的荷載基本不變。Abstract: Wind energy is a new kind of inexhaustible energy. It is gradually replacing the traditional energy as its pollution-free and renewable. China has a long coastline, abundant offshore resources, and vast offshore space. Offshore wind farms have gradually become the focus of wind-power development. Large-diameter single-pile foundations are being widely used in the field of offshore power generation because of advantages including convenient manufacture and installation, clearer stress conditions compared with pile groups, and affordable cost and economy. Therefore, it becomes significantly relevant to study the dynamic response characteristics of large-diameter single-pile foundations under horizontal cyclic loads to eliminate the dangers hidden in engineering and installation and ensure normal usage during service. A numerical calculation model of an offshore, wind-power monopile foundation in heterogeneous soil was established by the finite element analysis software ABAQUS. The wave, ocean current, and wind load on the monopile foundation were equivalent to a bidirectional symmetrical cyclic load. The horizontal displacement, shear force, and bending moment along the pile shaft, and pile-side soil resistance under the horizontal cyclic load were studied. Furthermore, the horizontal displacements along the pile shaft under different cyclic times were compared with one another and analyzed. The results show that the horizontal displacement along the pile shaft accumulates gradually with time, and with increase in the number of cycles, the time lag of the maximum displacement of the pile body at mud surface occurs. The shear force along the pile shaft appears negative. The maximum bending moment of the pile body occurs in shallow soil. The variation in the soil-resistance curve of the pile body vs time occurs at a cut-off point at approximately 2/3 of the buried depth. Additionally, the variation laws of soil resistance within the upper and lower boundaries of the cut-off point are just the opposite of each other. The soil resistance increases significantly at the interface between silt and silty soil. The load along the buried depth of the inner wall of the pile remains unchanged at different time points.
-
表 1 樁周土及樁端土參數
Table 1. Parameters of soil around pile and soil at pile end
Soil layer Thickness/
mElasticity modulus/
MPaPoisson’s
ratioEffective weight/
(kN·m?3)Cohesive force/
kPaInternal friction angle/
(°)Dilatancy angle/
(°)Mucky clay 28 6.6 0.3 7.5 17.6 12.8 0.1 Silt 16 6.4 0.3 6.2 19.8 11.6 0.1 Silty sand 56 39.5 0.3 9.1 4.5 31.3 15 表 2 樁的物理力學參數
Table 2. Physical and mechanical parameters of pile
Pile diameter/m Wall thickness/mm Burial depth/m Pile length/m Elasticity modulus/GPa Poisson’s ratio Effective weight/(kN·m?3) 5 70 50 66 210 0.3 68 259luxu-164 -
參考文獻
[1] Jin J W, Yang M, Wang W, et al. Offshore wind turbine monopile foundation modal and parameter sensitivity analysis. J Tongji Univ Nat Sci, 2014, 42(3): 386 doi: 10.3969/j.issn.0253-374x.2014.03.010靳軍偉, 楊敏, 王偉, 等. 海上風電機組單樁基礎模態及參數敏感性分析. 同濟大學學報(自然科學版), 2014, 42(3):386 doi: 10.3969/j.issn.0253-374x.2014.03.010 [2] Wang G C, Wang W, Yang M. Design and analysis of monopile foundation for 3.6 MW offshore wind turbine. Chin J Geotech Eng, 2011, 33(Suppl 2): 95王國粹, 王偉, 楊敏. 3.6 MW海上風機單樁基礎設計與分析. 巖土工程學報, 2011, 33(增刊 2):95 [3] Kong D S, Deng M X, Liu Y, et al. Study of the force and deformation characteristics of subsea mudmat-pile hybrid foundations. Polish Maritime Res, 2018, 25(S3): 43 doi: 10.2478/pomr-2018-0111 [4] Li W C, Yang M, Zhu B T. Case study of p-y model for short rigid pile in sand. Rock Soil Mech, 2015, 36(10): 2989李衛超, 楊敏, 朱碧堂. 砂土中剛性短樁的p-y模型案例研究. 巖土力學, 2015, 36(10):2989 [5] Luo R P, Li W C, Yang M. Accumulated response of offshore large-diameter monopile under lateral cyclic loading. Rock Soil Mech, 2016, 37(Suppl 2): 607羅如平, 李衛超, 楊敏. 水平循環荷載下海上大直徑單樁累積變形特性. 巖土力學, 2016, 37(增刊 2):607 [6] Leblanc C, Houlsby G T, Byrne B W. Response of stiff piles to long term cyclic lateral loading. Géotechnique, 2010, 60(2): 79 [7] Peng J, Clarke B G, Rouainia M. Increasing the resistance of piles subject to cyclic lateral loading. J Geotech Geoenviron Eng, 2011, 137(10): 977 doi: 10.1061/(ASCE)GT.1943-5606.0000504 [8] Guo P F, Zhou S H, Yang L C, et al. Analytical solution of the vertical dynamic response of rock-socked pile considering transverse inertial effect in unsaturated soil. Chin J Theor Appl Mech, 2017, 49(2): 344 doi: 10.6052/0459-1879-16-286郭鵬飛, 周順華, 楊龍才, 等. 考慮橫向慣性效應的非飽和土中單樁的豎向動力響應. 力學學報, 2017, 49(2):344 doi: 10.6052/0459-1879-16-286 [9] Zhang G J. Analysis on Horizontal Displacement of Monopile Foundations under Long-Term Cyclic Later Loading [Dissertation]. Hangzhou: Zhejiang University, 2013張光建. 長期水平循環荷載下大直徑樁的累積位移分析[學位論文]. 杭州: 浙江大學, 2013 [10] Basack S, Banerjee A K. Offshore pile foundation subjected to lateral cyclic load in layered soil. Adv Mater Res, 2014, 891-892: 24 doi: 10.4028/www.scientific.net/AMR.891-892.24 [11] Bhattacharya S, Adhikari S. Experimental validation of soil-structure interaction of offshore wind turbines. Soil Dyn Earthquake Eng, 2011, 31(5-6): 805 doi: 10.1016/j.soildyn.2011.01.004 [12] Zhu B, Xiong G, Liu J C, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand. Chin J Geotech Eng, 2013, 35(10): 1807朱斌, 熊根, 劉晉超, 等. 砂土中大直徑單樁水平受荷離心模型試驗. 巖土工程學報, 2013, 35(10):1807 [13] Kuo Y S, Achmus M, Abdel-Rahmen K. Minimum embedded length of cyclic horizontally loaded monopoles. J Geotech Geoenviron Eng, 2012, 138(3): 357 doi: 10.1061/(ASCE)GT.1943-5606.0000602 [14] Achmus M, Kuo Y S, Abdel-Rahman K, et al. Capacity degradation method for piles under cyclic axial loads. Comput Geotechnics, 2020, 128: 103838 doi: 10.1016/j.compgeo.2020.103838 [15] Kong D S, Deng M X, Xu Y. Study on calculation of pile sliding interval of large-diameter steel pipe piles on offshore platforms. Math Problems Eng, 2019, 2019: 3549296 [16] Yu S Z, Li S. P-y curve methods of steel pipe pile foundations under combined loads. J Hydroelectr Eng, 2018, 37(1): 101 doi: 10.11660/slfdxb.20180112余世章, 李颯. 復合荷載下海上鋼管樁基礎p-y曲線法研究. 水力發電學報, 2018, 37(1):101 doi: 10.11660/slfdxb.20180112 [17] Liu J C, Xiong G, Zhu B, et al. Bearing capacity and deflection behaviors of large diameter monopile foundations in sand seabed. Rock Soil Mech, 2015, 36(2): 591劉晉超, 熊根, 朱斌, 等. 砂土海床中大直徑單樁水平承載與變形特性. 巖土力學, 2015, 36(2):591 [18] Liu H J, Yin Y J, Chang J Q. Research on the pile-soil interaction of monopile foundation under horizontal load for offshore wind turbine. Periodic Ocean Univ China, 2016, 46(3): 113劉紅軍, 尹燕京, 常季青. 水平荷載下海上風機單樁基礎樁土相互作用研究. 中國海洋大學學報(自然科學版), 2016, 46(3):113 [19] Kong D S, Deng M X, Zhao Z M. Seismic interaction characteristics of an inclined straight alternating pile group-soil in liquefied ground. Adv Civil Eng, 2019, 2019: 3758286 [20] Kong W X, Rui Y Q, Dong B D. Determination of dilatancy angle for geomaterials under non-associated flow rule. Rock Soil Mech, 2009, 30(11): 3278 doi: 10.3969/j.issn.1000-7598.2009.11.010孔位學, 芮勇勤, 董寶弟. 巖土材料在非關聯流動法則下剪脹角選取探討. 巖土力學, 2009, 30(11):3278 doi: 10.3969/j.issn.1000-7598.2009.11.010 [21] Kong D S, Deng M X, Liu Y, et al. The environmental study on consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires. Ekoloji, 2018, 27(106): 1503 [22] Fei K, Peng J. Detailed Explanation of ABAQUS Geotechnical Engineering Examples. Beijing: The People’s Posts and Telecommunications Press, 2016費康, 彭劼. ABAQUS巖土工程實例詳解. 北京: 人民郵電出版社, 2016 [23] Feng L Y, Li D Y. Analysis of influence factors on cyclic bearing behaviors of skirted suction caissons. Adv Eng Sci, 2018, 50(6): 156馮凌云, 李大勇. 砂土中裙式吸力基礎水平循環承載特性的影響因素分析. 工程科學與技術, 2018, 50(6):156 [24] Cao J F, Shi Y P. Answers to Frequently Asked Questions About ABAQUS Finite Element Analysis. Beijing: China Machine Press, 2009曹金鳳, 石亦平. ABAQUS有限元分析常見問題解答. 北京: 機械工業出版社, 2009 [25] Sun Y X. Experimental and Numerical Studies on a Laterally Loaded Monopile Foundation of Offshore Wind Turbine [Dissertation]. Hangzhou: Zhejiang University, 2016孫永鑫. 近海風機超大直徑單樁水平承載特性試驗與數值分析[學位論文]. 杭州: 浙江大學, 2016 [26] Kong D S, Bai Y F, Chen Y P, et al. A study on the seismic response characteristics of an oblique pile group-soil-structure with different pile caps. Shock Vib, 2019, 2019: 8141045 [27] Chen X K. Study on Soil Plug Effect of Super-Large Diameter Steel Pipe Pile Foundation of Offshore Wind Turbine [Dissertation]. Nanjing: Southeast University, 2017陳新奎. 海上風電超大直徑鋼管樁基礎土塞效應研究[學位論文]. 南京: 東南大學, 2017 [28] Song B, Zhao W N, Shuang M. Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action. Chin J Eng, 2019, 41(10): 1351宋波, 趙偉娜, 雙妙. 沖刷深度對海上風電塔地震動力響應的影響分析. 工程科學學報, 2019, 41(10):1351 [29] Yan T J, Zhang L W, Cui R. Numerical simulation of the separation efficiency in offshore oil field downhole oil-water separation (DOWS). J Beijing Univ Chem Technol Nat Sci, 2012, 05: 108顏廷俊, 張麗穩, 崔日. 海上油田井下油水分離裝置分離效率的數值模擬. 北京化工大學學報(自然科學版), 2012, 05:108 -