-
摘要: 采用數學模擬方法研究鋼軌鋼連鑄坯脫氫退火行為,分析不同退火溫度、退火時間條件下連鑄坯脫氫效果,優化了脫氫退火工藝。在脫氫退火過程中,連鑄坯角部和邊部的氫含量快速降低,而連鑄坯中心氫含量在加熱段后期開始降低;隨著退火溫度的升高,連鑄坯中心脫氫的起始點明顯提前,最大脫氫速率顯著增加。隨著均熱段時間逐漸延長,連鑄坯中心氫含量明顯降低,但脫氫速率的增加幅度逐漸減小。通過優化脫氫退火工藝參數,連鑄坯中心氫的質量分數能夠降低至0.6×10?6,脫氫效果顯著。Abstract: Due to moisture in the ore, auxiliary material, and ladle refractory material, the hydrogen element is easily enriched in molten steel. In the metallurgy process, some hydrogen atoms form bubbles and are removed by gravity, whearas others solidify in the strand and remain in the produced steel. When the hydrogen content reaches a certain critical value, the enriched hydrogen atoms congregate to produce a white spot, which greatly reduces the strength and toughness of the steel product, and leads to brittle fracture during its service period. At present, the RH (Ruhrstahl–Heraeus) and VD (vacuum degasser) refining processes are commonly applied in steel plants, which can reduce the hydrogen content to less than 2×10?6. With the demand for high quality steel, the hydrogen content must be further decreased, so hydrogen diffusion in solid steel during the annealing process is gradually attracting increasing attention. In this study, a two-dimensional model was built to investigate the characteristic of dehydrogenation in the bloom annealing process of rail steel. Moreover, the effect of annealing temperature and annealing time on hydrogen diffusion were analyzed, and the annealing parameters were optimized. During the dehydrogenation annealing process, the hydrogen content at the corners and edges of the bloom are found to decrease rapidly, while that in the center of the strand begin to decrease in the later heating stage. As the annealing temperature increases, the starting point of dehydrogenation in the bloom center moves ahead and the maximum dehydrogenation rate increases significantly. With the extension of the soaking period, the central hydrogen content of bloom decreases significantly, but the increase rate of the dehydrogenation gradually decreases. By optimizing the bloom annealing parameters, the hydrogen content in the bloom can be steadily reduced to 0.6×10?6, which fully meets the requirement of high quality steel production.
-
Key words:
- bloom /
- dehydrogenation /
- annealing temperature /
- annealing time /
- numerical simulation
-
表 1 模型參數
Table 1. Physical parameter used in the model
Item Value Density/(kg?m?3) 7000 Specific heat capacity/(J·kg?1·K?1) 690 Thermal conductivity/(W·m?1·K?1) 28 Equilibrium hydrogen content/10?6 0.06 259luxu-164 -
參考文獻
[1] Liu Q L, Zhou Q J, Venezuela J, et al. A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction. Corros Rev, 2016, 34(3): 127 doi: 10.1515/corrrev-2015-0083 [2] Hu Z H. Improvement of hydrogen removal from 120 t VD. Met Mater Metall Eng, 2014, 42(2): 36胡振華. 改善120 t VD脫氫效果的研究. 金屬材料與冶金工程, 2014, 42(2):36 [3] Chen A M. A study on 210 t RH vacuum degas process at a sheet works. Special Steel, 2012, 33(6): 16 doi: 10.3969/j.issn.1003-8620.2012.06.005陳愛梅. 薄板廠210 t RH脫氣工藝研究. 特殊鋼, 2012, 33(6):16 doi: 10.3969/j.issn.1003-8620.2012.06.005 [4] Zhu B H, Chattopadhyay K, Hu X P, et al. Optimization of sampling location in the ladle during RH vacuum refining process. Vacuum, 2018, 152: 30 doi: 10.1016/j.vacuum.2018.02.033 [5] Ling H T, Zhang L F. Numerical simulation of gas and liquid two-phase flow in the RH process. Metall Mater Trans B, 2019, 50(4): 2017 doi: 10.1007/s11663-019-01583-3 [6] Mukherjee D, Shukla A K, Senk D. Prediction of decarburisation process along with hydrogen and nitrogen removal by mathematical modelling of RH degassing process. Ironmaking Steelmaking, 2018, 45(5): 412 doi: 10.1080/03019233.2016.1274847 [7] Chen G J, He S P. Circulation flow rate and decarburization in the RH degasser under low atmospheric pressure. Vacuum, 2018, 153: 132 doi: 10.1016/j.vacuum.2018.04.007 [8] Wei J H. Mathematical modeling of the vacuum circulation refining process of molten steel. J Shanghai Univ, 2003, 7(2): 97 doi: 10.1007/s11741-003-0077-9 [9] Bucur L, Bucur G, Moise A G, et al. Finite element method applied to mathematical modelling of the hydrogen diffusion process in metals. Rev Chim, 2016, 67(1): 87 [10] Zhang F C, Zhang X S, Li C F, et al. First-principles calculations on the diffusion behaviors of hydrogen atom in α-Fe and γ-Fe. J Atom Mol Phys, 2020, 37(3): 397張鳳春, 張小山, 李春福, 等. α-Fe和γ-Fe中氫擴散行為的第一性原理計算. 原子與分子物理學報, 2020, 37(3):397 [11] Liu X K, Wang J J, Lu M X, et al. An analysisof hydrogen diffusion process in metals by boundary element analysis. J Xi'an Petrol Inst, 1992, 7(1): 24劉曉坤, 王建軍, 路民旭, 等. 金屬內氫擴散過程的邊界元分析. 西安石油學院學報, 1992, 7(1):24 [12] Tao P, Wang Y F, Gong J M, et al. Simulation of hydrogen diffusion in duplex stainless steel. J Shanghai Jiaotong Univ, 2018, 52(9): 1086陶平, 王艷飛, 鞏建鳴, 等. 氫在雙相不銹鋼中的擴散模擬. 上海交通大學學報, 2018, 52(9):1086 [13] Fan J K, Hou G J, Peng B, et al. Activation and diffusion model of hydrogen in steel under microcosmic condition and its influencing factors. Heat Treat Met, 2019, 44(3): 197范俊鍇, 侯高杰, 彭波, 等. 微觀視域下鋼內氫的溫度激發擴散模型及影響因素. 金屬熱處理, 2019, 44(3):197 [14] You J D, Yang Y T, Zhang H K, et al. Numerical simulation to dehydrogenation annealing process of Cr5 steel. Shanghai Met, 2011, 33(1): 59 doi: 10.3969/j.issn.1001-7208.2011.01.013游佳迪, 楊弋濤, 張洪奎, 等. Cr5鋼錠去氫退火過程的數學模擬. 上海金屬, 2011, 33(1):59 doi: 10.3969/j.issn.1001-7208.2011.01.013 [15] Tan T Y, Du F S, Li J, et al. Finite element analysis of hydrogen diffusion in large forgings. J Plast Eng, 2017, 24(1): 180譚天宇, 杜鳳山, 李杰, 等. 大型鍛件中氫擴散的研究. 塑性工程學報, 2017, 24(1):180 [16] Yang D, Xu S P, Huang H Q, et al. Numerical simulation of hydrogen diffusion in steel plate. Res Iron Steel, 2016, 44(1): 19楊東, 許少普, 黃紅乾, 等. 鋼板中氫擴散的數值模擬. 鋼鐵研究, 2016, 44(1):19 [17] Wang W H, Li Z J, Chu R S, et al. Hydrogen diffusion in slab for stacking slow-cooling. Iron Steel, 2019, 54(11): 49王衛華, 李戰軍, 初仁生, 等. 堆冷方式下板坯氫擴散效果. 鋼鐵, 2019, 54(11):49 [18] Tao P, Gong J M, Wang Y F, et al. Modeling of hydrogen diffusion in duplex stainless steel based on microstructure using finite element method. Int J Pressure Vessels Piping, 2020, 180: 104031 doi: 10.1016/j.ijpvp.2019.104031 [19] Sezgin J G, Bosch C, Montouchet A, et al. Modelling and simulation of hydrogen redistribution in a heterogeneous alloy during the cooling down to 200 ℃. Int J Hydrogen Energy, 2017, 42(30): 19346 doi: 10.1016/j.ijhydene.2017.03.095 [20] Yan C Y, Liu C Y, Yan B. 3D modeling of the hydrogen distribution in X80 pipeline steel welded joints. Comput Mater Sci, 2014, 83: 158 doi: 10.1016/j.commatsci.2013.11.007 [21] Li L F, Song B, Cai Z Y, et al. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel. Mater Sci Eng A, 2019, 742: 712 doi: 10.1016/j.msea.2018.09.048 [22] Ilin D N, Saintier N, Olive J M, et al. Simulation of hydrogen diffusion affected by stress-strain heterogeneity in polycrystalline stainless steel. Int J Hydrogen Energy, 2014, 39(5): 2418 doi: 10.1016/j.ijhydene.2013.11.065 [23] Jiang P, Yuan T X, Chen W X, et al. Microstructure and mechanical properties of V-Ti-Ni alloy for hydrogen separation with heat treatment process. Chin J Rare Met, 2018, 42(12): 1260江鵬, 袁同心, 肖思進, 等. 熱處理工藝對V-Ti-Ni氫分離合金顯微組織和硬度的影響. 稀有金屬, 2018, 42(12):1260 [24] Cui L, Gao Y, Gu C S, et al. Effect of trace element Cr on microstructures and properties of welded joints of marine corrosion resisting steels. J Beijing Univ Technol, 2018, 44(6): 953崔麗, 高艷, 顧長石, 等. 微量元素Cr對船用耐蝕鋼焊接接頭組織和性能的影響. 北京工業大學學報, 2018, 44(6):953 [25] Olden V, Saai A, Jemblie L, et al. FE simulation of hydrogen diffusion in duplex stainless steel. Int J Hydrogen Energy, 2014, 39(2): 1156 doi: 10.1016/j.ijhydene.2013.10.101 [26] Xian A P, Li P J, Chen W X, et al. Hydrogen escape form heavy rail steel bloom by stack cooling at Panzhihua iron and steel company. Acta Metall Sinica, 1993, 29(6): A273冼愛平, 李培基, 陳文繡, 等. 攀鋼重軌鋼初軋坯堆冷的除氫效果. 金屬學報, 1993, 29(6):A273 -