Influence of the proportion of granular sludge and flocculent sludge on the degradation efficiency of tomato paste wastewater
-
摘要: 以番茄醬加工廢水為培養基質,以SBR反應器的運行模式探討顆粒化過程中的顆粒污泥粒徑變化及對COD、N、P的去除能力;并分析顆粒污泥和絮體污泥以不同比例共存時的污泥特性、出水水質、有機污染物降解能力和混合污泥系統的污泥最佳比例。顆粒污泥的優勢粒徑范圍在0.45~3 mm之間,對COD、
${{\rm{NH}}_{4}^{+}} $ —N和${{\rm{PO}}_{4}^{3-}} $ —P的去除率分別達到98%以上、90%以上和90%以上。顆粒污泥質量比占總污泥50%時,對COD的去除率最高,達到98%以上,對$ {{\rm{NH}}_{4}^{+}}$ —N的去除率為78.72%,出水${{\rm{PO}}_{4}^{3-}} $ —P質量濃度在1.0 mg·L?1左右,去除率可以達到70.68%,其脫氮除磷效果較好。顆粒污泥質量分數<75%時,對COD的去除率達到98%以上,對出水${{\rm{NH}}_{4}^{+}} $ —N和${{\rm{PO}}_{4}^{3-}} $ —P去除率均達到90%以上。SVI30值低于35 mL·g?1,SVI5/SVI30接近1,MLVSS/MLSS為0.90,活性高,污泥沉降性能好,微生物生長旺盛,有望通過排出老化顆粒,控制顆粒污泥質量分數≥75%,保持絮體污泥和顆粒污泥的合適比例為10%~25%,同時,實驗粒徑范圍控制在0.45~3.00 mm,采用雙向排泥方式,將粒徑大于3.0 mm的顆粒和多余的絮體污泥一起排除反應池,其有機物去除性能優異,可實現顆粒污泥的長期穩定運行,解決顆粒污泥解體問題。Abstract: The removal process of waste water sludge formed in tomato sauce processing plants was analyzed and explored. The operation mode of sequencing batch reactors (SBR) was used to explore the changes in particle sizes and the removal capacity of COD, N and P in the process of granulation; the sludge characteristics, water quality, organic pollutant degradation capacity and the optimal proportion of sludge in the mixed sludge system were analyzed when the particle sludge and flocculent sludge coexisted in different proportions. The majority of particle sizes of granular sludge are in the range of 0.45?3 mm, and the removal rates of COD,${{\rm{NH}}_{4}^{+}} $ —N and${{\rm{PO}}_{4}^{3-}} $ —P are over 98%, 90% and 90% respectively. When the quality ratio of granular sludge accounts for 50% of the total sludge, the removal rate of COD is the highest, which is more than 98%, the removal rate of${{\rm{NH}}_{4}^{+}} $ —N is 78.72%, and the concentration of${{\rm{PO}}_{4}^{3-}} $ —P in the effluent is about 1.0 mg·L?1, the removal rate of can reach 70.68%. The removal of nitrogen and phosphorus is also good. When the quality proportion of granular sludge is more than 75%, the removal rate of COD is higher than 98%, and the removal rate of${{\rm{NH}}_{4}^{+}} $ —N and${{\rm{PO}}_{4}^{3-}} $ —P is higher than 90%. SVI30 value is lower than 35 mL·g?1, SVI5/SVI30 is close to 1, MLVSS/MLSS is 0.90, with high activity, good sludge settling performance, and vigorous growth of microorganisms. Therefore, SBR is expected to discharge aged particles, control the quality proportion of granular sludge ≥75%, and maintain the required proportion of flocculent sludge and granular sludge of 10%–25%. At the same time, the particle size range is controlled at 0.45–3.00 mm. Two way sludge discharge is used to remove particles larger than 3.0 mm together with excess flocculent sludge. The reactor has excellent organic matter removal performance. It can realize the long-term stable operation, effectively remove the granular sludge, and solve the problem of granular sludge disintegration. -
表 1 試驗污泥分組
Table 1. Test sludge grouping
% Group number Mass fraction of flocculent sludge Mass fraction of granular sludge Total mass fraction of sludge A 75 25 100 B 50 50 100 C 25 75 100 表 2 人工合成番茄醬加工廢水的組分
Table 2. Components of wastewater from tomato sauce processing
mg·L?1 Element Chemical composition Component concentration Trace elements (NH4)6Mo7O24·4H2O 0.05 Al2(SO4)3·18H2O 0.25 H3BO4 0.05 CuCl2 0.05 NiCl·6H2O 0.05 CoCl2·6H2O 0.05 MnSO4·H2O 0.05 ZnSO4·7H2O 0.11 Constant element CaCl2 20 FeCl3·6H2O 0.83 MgSO4·7H2O 50 259luxu-164 -
參考文獻
[1] Peng Y Z, Wu L, Ma Y, et al. Advances: granulation mechanism, characteristics and application of aerobic sludge granules. Environ Sci, 2010, 31(2): 273彭永臻, 吳蕾, 馬勇, 等. 好氧顆粒污泥的形成機制、特性及應用研究進展. 環境科學, 2010, 31(2):273 [2] Gao D W, Liu L, Liang H, et al. Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit Rev Biotechnol, 2011, 31(2): 137 doi: 10.3109/07388551.2010.497961 [3] Liu Y Q, Moy B, Kong Y H, et al. Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme Microb Technol, 2010, 46(6): 520 doi: 10.1016/j.enzmictec.2010.02.001 [4] Peng Y Z, Qian W T, Wang Q, et al. Unraveling microbial structure of activated sludge in a full-scale nitrogen removal plant using metagenomic sequencing. J Beijing Univ Technol, 2019, 45(1): 95彭永臻, 錢雯婷, 王琦, 等. 基于宏基因組的城市污水處理廠生物脫氮污泥菌群結構分析. 北京工業大學學報, 2019, 45(1):95 [5] Liu W R, Song J J, Wang J F, et al. Rapid achievement of nitrifying micro-granular sludge and its nitritation function. Environ Sci, 2020, 41(1): 353劉文如, 宋家俊, 王建芳, 等. 硝化微顆粒污泥快速培養及其亞硝化功能快速實現. 環境科學, 2020, 41(1):353 [6] Zhou Y, Wang S P, Yu J J, et al. Application of aerobic granular sludge technology in biological wastewater treatment. Ind Water Treat, 2020, 40(5): 12 doi: 10.11894/iwt.2019-0357周瑤, 王少坡, 于靜潔, 等. 污水生物處理中的好氧顆粒污泥技術. 工業水處理, 2020, 40(5):12 doi: 10.11894/iwt.2019-0357 [7] Wang R D, Guo A, Li S, et al. Characteristics of biological phosphorus removal system with coexistence of granules and flocs. China Water Wastewater, 2015, 31(13): 4王然登, 郭安, 李碩, 等. 顆粒/絮體共存的生物除磷系統的特性研究. 中國給水排水, 2015, 31(13):4 [8] Li A J, Yang S F, Li X Y, et al. Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Res, 2008, 42(13): 3552 doi: 10.1016/j.watres.2008.05.005 [9] Yao Y, Pan J, Xiao P Y, et al. Review of treatment of high ammonia nitrogen wastewater by aerobic granular sludge. Environ Impact Assess, 2020, 42(1): 88姚源, 潘江, 肖芃穎, 等. 好氧顆粒污泥處理高氨氮廢水研究進展. 環境影響評價, 2020, 42(1):88 [10] Wang L, Zhan H H, Wang Q Q, et al. Research progress of influence parameters and methods for rapidly cultivating aerobic granular sludge. Environ Eng, 2020, 38(5): 1王磊, 湛含輝, 王晴晴, 等. 好氧顆粒污泥快速培養影響參數及方法研究進展. 環境工程, 2020, 38(5):1 [11] Chen Q W, Su K Z, Chen D D, et al. Process of aerobic granulation of activated sludge treating tomato paste processing wastewater. Res Environ Sci, 2018, 31(2): 369陳啟偉, 蘇饋足, 陳丁丁, 等. 處理番茄醬加工廢水的活性污泥顆粒化過程. 環境科學研究, 2018, 31(2):369 [12] Xin Z H, Chen C R, Jia W. Hydraulic promotion technology for granular sludge formation and property optimization. China Resour Compr Utilization, 2019, 37(12): 30 doi: 10.3969/j.issn.1008-9500.2019.12.008辛中華, 陳昌仁, 賈蔚. 顆粒污泥形成及特性優化的水力促進技術. 中國資源綜合利用, 2019, 37(12):30 doi: 10.3969/j.issn.1008-9500.2019.12.008 [13] Zhang B C, Huang S N, Zeng M J, et al. Recovery of aerobic granular sludge in a sequencing batch reactor by inoculating stored granules with different storage methods. Nonferrous Met Sci Eng, 2020, 11(2): 104張斌超, 黃思濃, 曾敏靜, 等. SBR中混合接種不同儲存方式的好氧顆粒污泥的恢復. 有色金屬科學與工程, 2020, 11(2):104 [14] Zhu L, Qi H Y, Lv M L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies. Bioresour Technol, 2012, 124: 455 doi: 10.1016/j.biortech.2012.08.059 [15] National Environmental Protection Agency. Methods for Monitoring and Analysis of Water and Wastewater. 4th Ed. Beijing: China Environmental Science Press, 2002國家環境保護總局. 水和廢水監測分析方法. 4版. 北京: 中國環境科學出版社, 2002 [16] Wang J, Peng Y Z, Yang X, et al. Effect of various types carbon source on the synthesis of PHA of aerobic granular sludge. China Environ Sci, 2015, 35(8): 2360 doi: 10.3969/j.issn.1000-6923.2015.08.014王杰, 彭永臻, 楊雄, 等. 不同碳源種類對好氧顆粒污泥合成PHA的影響. 中國環境科學, 2015, 35(8):2360 doi: 10.3969/j.issn.1000-6923.2015.08.014 [17] Liu W T, Chan O C, Fang H H P. Characterization of microbial community in granular sludge treating brewery wastewater. Water Res, 2002, 36(7): 1767 doi: 10.1016/S0043-1354(01)00377-3 [18] Feng D B, Wang W H, Wang Y S, et al. Clay-cultured aerobic granular sludge and its use in the treatment of tomato—Paste processing wastewater. Chin J Appl Environ Biol, 2019, 25(1): 199馮殿寶, 王維紅, 王燕杉, 等. 以黏土為載體的好氧顆粒污泥培養及其對番茄廢水的處理. 應用與環境生物學報, 2019, 25(1):199 [19] Peng Y Z, Pan C, Sun S H, et al. Effect of Influent ρ (C)/ρ (N) on the Nitrogen and Phosphorus Removal Performance of Pilot-scale AAO-BAF. J Beijing Univ Technol, 2019, 45(9): 904彭永臻, 潘聰, 孫事昊, 等. 進水碳氮比對中試AAO-BAF系統脫氮除磷性能的影響. 北京工業大學學報, 2019, 45(9):904 [20] Yuan Q J, Zhang H X, Chen F Y. Long-term stability of aerobic granular sludge under low carbon to nitrogen ratio. Environ Sci, https://doi.org/10.13227/j.hjkx.202001209袁強軍, 張宏星, 陳芳媛. 不同低碳氮比廢水中好氧顆粒污泥的長期運行穩定性. 環境科學, https://doi.org/10.13227/j.hjkx.202001209 [21] An P, Xu X C, Yang F L, et al. Comparison of the characteristics of anammox granules of different sizes. Biotechnol Bioprocess Eng, 2013, 18(3): 446 doi: 10.1007/s12257-012-0728-4 [22] Wang Y S, Wang W H, Dong X L, et al. Sludge granulation in SBR reactor for treatment of tomato paste processing wastewater. China Water Wastewater, 2019, 35(1): 25王燕杉, 王維紅, 董星遼, 等. SBR反應器處理番茄醬加工廢水的污泥顆粒化過程. 中國給水排水, 2019, 35(1):25 [23] Li Z H, Zeng J F, Li S, et al. Effect of size and number of aerobic granules on nitrification and denitrification. Environ Sci, 2012, 33(3): 903李志華, 曾金鋒, 李勝, 等. 顆粒粒徑與數量對硝化與反硝化過程的影響. 環境科學, 2012, 33(3):903 [24] Wang F, Yang F L, Liu Y H, et al. Cultivation of aerobic granules for simultaneous nitrification and denitrification by seeding different inoculated sludge. J Environ Sci, 2005, 17(2): 268 [25] Zhao B, Ding X S, Wu D Q, et al. Characteristics on simultaneous nitrogen and organic carbon removal and microbial community structure analysis of aerobic granular sludge treating high strength wastewater. Chin J Environ Eng, 2020, 14(2): 295趙彬, 丁雪松, 吳丹青, 等. 高負荷條件下好氧顆粒污泥同步脫氮除碳特性及微生物群落結構分析. 環境工程學報, 2020, 14(2):295 [26] Ran Z L, Tian W D, Li S F, et al. Phosphate removal performance of accumulibater PAO Ⅱ and biomass characteristics in anaerobic-aerobic reactor. Environ Eng, 2017, 35(11): 71冉治霖, 田文德, 李紹峰, 等. 常溫厭氧好氧環境下聚磷菌PAO Ⅱ的除磷特性及污泥特征. 環境工程, 2017, 35(11):71 [27] Wang S, Ruan Z Y, Wang Y, et al. Start-up characteristics of aerobic granular sludge bioreactor at low temperature. China Water Wastewater, 2014, 30(23): 1王碩, 阮智宇, 王燕, 等. 低溫好氧顆粒污泥反應器的啟動特性研究. 中國給水排水, 2014, 30(23):1 -