<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

總氧含量對齒輪鋼中非金屬夾雜物的影響

何肖飛 胡成飛 徐樂 王毛球

何肖飛, 胡成飛, 徐樂, 王毛球. 總氧含量對齒輪鋼中非金屬夾雜物的影響[J]. 工程科學學報, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001
引用本文: 何肖飛, 胡成飛, 徐樂, 王毛球. 總氧含量對齒輪鋼中非金屬夾雜物的影響[J]. 工程科學學報, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001
HE Xiao-fei, HU Cheng-fei, XU Le, WANG Mao-qiu. Effect of total oxygen on the nonmetallic inclusion of gear steel[J]. Chinese Journal of Engineering, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001
Citation: HE Xiao-fei, HU Cheng-fei, XU Le, WANG Mao-qiu. Effect of total oxygen on the nonmetallic inclusion of gear steel[J]. Chinese Journal of Engineering, 2021, 43(4): 537-544. doi: 10.13374/j.issn2095-9389.2020.03.05.001

總氧含量對齒輪鋼中非金屬夾雜物的影響

doi: 10.13374/j.issn2095-9389.2020.03.05.001
基金項目: 國家重點研發計劃資助項目(2016YFB0300102)
詳細信息
    通訊作者:

    E-mail:xiaofei6423@126.com

  • 中圖分類號: TF4

Effect of total oxygen on the nonmetallic inclusion of gear steel

More Information
  • 摘要: 為了保證齒輪鋼中非金屬夾雜物的控制,并確定齒輪鋼經濟合理的總氧含量控制目標,開展了總氧含量對齒輪鋼中非金屬夾雜物的影響研究。以三種不同總氧含量的Mn–Cr系齒輪鋼為研究對象,利用Aspex掃描電鏡、極值法、疲勞測試等不同方法研究了齒輪鋼中非金屬夾雜物數量、分布、尺寸等,獲得了夾雜物與齒輪鋼總氧含量的對應關系。在本文實驗條件下,隨著總氧含量的降低,鋼中氧化物夾雜數量不斷減小,其中5~10 μm的小尺寸夾雜物減小最明顯,而10 μm以上的大尺寸夾雜物數量變化規律不明顯。另外,極值法和疲勞試驗結果表明,總氧含量高時(質量分數為0.0013%),鋼中最大氧化物夾雜尺寸也較大,比總氧質量分數為0.0010%和0.0005%的實驗鋼的最大夾雜物尺寸高10 μm以上,且當總氧含量比較低時(質量分數≤0.0010%),實驗鋼總氧質量分數變化(0.0010%、0.0005%)對鋼中最大夾雜物尺寸影響不大。

     

  • 圖  1  非金屬夾雜物試樣取樣及檢測方案

    Figure  1.  Sampling and detection scheme of nonmetallic inclusions

    圖  2  實驗鋼中非金屬夾雜物類型及典型形貌。(a),(b),(c)氧化物夾雜;(d)硫化物夾雜;(e)復合型夾雜物

    Figure  2.  Types and typical morphology of nonmetallic inclusions in test steels: (a), (b), (c) oxide inclusion; (d) sulfide inclusion; (e) oxide–sulfide complex inclusion

    圖  3  三類非金屬氧化物夾雜典型能譜。(a)Al2O3;(b)MgO–Al2O3:(c)CaO–Al2O3

    Figure  3.  Typical EDS of three kinds of nonmetallic oxide inclusions: (a) Al2O3; (b) MgO–Al2O3: (c) CaO–Al2O3

    圖  4  不同總氧含量實驗鋼中氧化物夾雜物成分分布。(a)1號鋼;(b)2號鋼;(c)3號鋼

    Figure  4.  Composition distribution of oxide inclusions in different total oxygen content steels: (a) Steel No.1; (b) Steel No.2; (c) Steel No.3

    圖  5  總氧含量對實驗鋼中氧化物夾雜數量密度的影響

    Figure  5.  Effect of total oxygen content on the density of oxide inclusions in test steels

    圖  6  總氧含量對實驗鋼中氧化物夾雜分布的影響。(a)1號鋼;(b)2號鋼;(c)3號鋼

    Figure  6.  Effect of total oxygen content on the distribution of oxide inclusions in test steels: (a) Steel No.1; (b) Steel No.2; (c) Steel No.3

    圖  7  極值法預測不同總氧含量實驗鋼中最大夾雜物尺寸

    Figure  7.  Prediction of the maximum inclusion size in steels with different total oxygen content by the extreme value method

    圖  8  疲勞斷口上典型夾雜物及其能譜。(a)CaO–Al2O3;(b)MgO–Al2O3

    Figure  8.  Typical inclusions of fatigue fracture and their EDS: (a) CaO–Al2O3;(b) MgO–Al2O3

    圖  9  總氧含量對鋼中最大夾雜物尺寸的影響

    Figure  9.  Effect of total oxygen content on the size of the largest inclusions in steels

    表  1  實驗鋼的化學成分(質量分數)

    Table  1.   Chemical composition of experimental steel %

    Steel No.CSiMnCrAlTiPSO
    10.180.071.231.210.02<0.001<0.015<0.0350.0013
    20.170.071.221.220.03<0.001<0.015<0.0350.0010
    30.170.071.241.240.03<0.001<0.015<0.0350.0005
    下載: 導出CSV

    表  2  實驗鋼中氧化物夾雜數量密度

    Table  2.   Number density of oxide inclusions in test steels mm–2

    Steel No.5–10 μm10–15 μm15–20 μm≥20 μmTotal
    11.470.120.030.071.69
    20.540.130.120.040.83
    30.060.01000.07
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Dengo C, Meneghetti G, Dabalà M. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels. Int J Fatigue, 2015, 80: 145 doi: 10.1016/j.ijfatigue.2015.04.015
    [2] Chen H, Zhou X Y. Research progress of gear steel for automobiles. J Mater Sci Eng, 2011, 29(3): 478

    陳暉, 周細應. 汽車齒輪鋼的研究進展. 材料科學與工程學報, 2011, 29(3):478
    [3] Wang X H, Jiang M, Yu H X, et al. Investigation on non-metallic inclusions in ultra-low oxygen special steels. Steelmaking, 2015, 31(6): 1

    王新華, 姜敏, 于會香, 等. 超低氧特殊鋼中非金屬夾雜物研究. 煉鋼, 2015, 31(6):1
    [4] Murakami Y, Yamashita Y. Prediction of life and scatter of fatigue failure originated at nonmetallic inclusions. Procedia Eng, 2014, 74: 6 doi: 10.1016/j.proeng.2014.06.214
    [5] Murakami Y, Beretta S. Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes, 1999, 2(2): 123 doi: 10.1023/A:1009976418553
    [6] Krewerth D, Lippmann T, Weidner A, et al. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime. Int J Fatigue, 2016, 84: 40 doi: 10.1016/j.ijfatigue.2015.11.001
    [7] Bathias C. There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct, 1999, 22(7): 559 doi: 10.1046/j.1460-2695.1999.00183.x
    [8] Xu K D. Certain basic subjects on clean steel. Acta Metall Sin, 2009, 45(3): 257 doi: 10.3321/j.issn:0412-1961.2009.03.001

    徐匡迪. 關于潔凈鋼的若干基本問題. 金屬學報, 2009, 45(3):257 doi: 10.3321/j.issn:0412-1961.2009.03.001
    [9] Jiang M, Wang X H, Chen B, et al. Control of non-metallic inclusions in extra low oxygen special steel // Proceedings of the 9th China Steel Conference. Beijing, 2013: 1

    姜敏, 王新華, 陳斌, 等. 超低氧特殊鋼中非金屬夾雜物控制技術//第九屆中國鋼鐵年會論文集. 北京, 2013: 1
    [10] Uesugi T. Recent development of bearing steel in Japan. Tetsu-To-Hagane, 1988, 74(10): 1889 doi: 10.2355/tetsutohagane1955.74.10_1889
    [11] Uesugi T. Recent development of bearing steel in Japan. Trans Iron Steel Inst Jpn, 1988, 28(11): 893 doi: 10.2355/isijinternational1966.28.893
    [12] Uesugi T. Production of high-carbon chromium bearing steel in vertical type continuous caster. Trans Iron Steel Inst Jpn, 1986, 26(7): 614 doi: 10.2355/isijinternational1966.26.614
    [13] Tsubota K, Fukumoto I. Production and quality of high cleanliness bearing steel // Proceedings of the 6th International Iron and Steel Congress. Nagoya, 1990: 637.
    [14] Kawakami K, Taniguchi T, Nakashima K. Generation mechanisms of non-metallic inclusions in high-cleanliness steel. Tetsu-to-Hagané, 2007, 93(12): 743
    [15] Yang J, Wang X H, Jiang M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag. J Iron Steel Res Int, 2011, 18(7): 8 doi: 10.1016/S1006-706X(11)60083-6
    [16] Xu K D, Xiao L J. Deoxidation and inclusion control in special steel refining. Iron Steel, 2012, 47(10): 1

    徐匡迪, 肖麗俊. 特殊鋼精煉中的脫氧及夾雜物控制. 鋼鐵, 2012, 47(10):1
    [17] Yang H L, He P, Zhai Y C. Progress on control of ultra-low-oxygen content and non-metallic inclusions in high quality bearing steel. Special Steel, 2013, 34(2): 16 doi: 10.3969/j.issn.1003-8620.2013.02.005

    楊虎林, 何平, 翟玉春. 高品質軸承鋼超低氧含量和非金屬夾雜物控制的進展. 特殊鋼, 2013, 34(2):16 doi: 10.3969/j.issn.1003-8620.2013.02.005
    [18] Chen T M. Thermodynamic calculation and application of non-metallic inclusions for ultra-low-oxygen gear steel. Iron Steel, 2011, 46(4): 26

    陳天明. 超低氧齒輪鋼非金屬夾雜物控制熱力學計算及應用. 鋼鐵, 2011, 46(4):26
    [19] Wang X H, Li J Z, Jiang M, et al. Investigation on technology of non-metallic inclusion control for high grade special steels of important uses. Steelmaking, 2017, 33(2): 50

    王新華, 李金柱, 姜敏, 等. 高端重要用途特殊鋼非金屬夾雜物控制技術研究. 煉鋼, 2017, 33(2):50
    [20] Ohnishi T, Shiwaku K, Kawasaki S, et al. Production of high carbon chromium bearing steel in BOF-CC process. Tetsu-to-Hagané, 1987, 73(3): 513
    [21] Wei P Y, Jiang M, Yang D, et al. Behavior of nonmetallic inclusions in ultra-low oxygen steel 25CrMoVNi for high speed rail axles during RH refining process. Special Steel, 2015, 36(3): 1 doi: 10.3969/j.issn.1003-8620.2015.03.001

    魏鵬遠, 姜敏, 楊疊, 等. 高速鐵路車軸用25CrMoVNi超低氧鋼RH精煉過程非金屬夾雜物的行為. 特殊鋼, 2015, 36(3):1 doi: 10.3969/j.issn.1003-8620.2015.03.001
    [22] Yang J, Du J, Chen B T, et al. Influence of calcium treatment on oxide inclusions in ultra-low oxygen refining process. Iron Steel, 2015, 50(1): 19

    楊俊, 杜江, 陳波濤, 等. 超低氧精煉時鈣處理對氧化物夾雜的影響. 鋼鐵, 2015, 50(1):19
    [23] Yang D, Jiang M, Lei S L, et al. Laboratory study on formation of complex inclusions in ultra-low oxygen steel. J Iron Steel Res, 2014, 26(1): 12

    楊疊, 姜敏, 雷少龍, 等. 超低氧鋼中復合夾雜物形成的實驗室研究. 鋼鐵研究學報, 2014, 26(1):12
    [24] Dong W L, Ni H W, Zhang H, et al. Control of magnesia-alumina spinel inclusions in the ultra-low-oxygen gear steel 28MnCr5. J Iron Steel Res, 2015, 27(3): 14

    董文亮, 倪紅衛, 張華, 等. 超低氧齒輪鋼28MnCr5中鎂鋁尖晶石夾雜物的控制. 鋼鐵研究學報, 2015, 27(3):14
    [25] Yu H X, Shao X J, Zhang J, et al. Study on the quantitative relationship between total oxygen content and non-metallic inclusion in steel with ASPEX SEM. Chin J Eng, 2015, 37(Suppl 1): 35

    于會香, 邵肖靜, 張靜, 等. 采用ASPEX掃描電鏡研究鋼中總氧和非金屬夾雜物的定量關系. 工程科學學報, 2015, 37(增刊 1):35
    [26] Murakami Y, Toriyama T, Coudert E. Instructions for a new method of inclusion rating and correlations with the fatigue limit. J Test Eval, 1994, 22(4): 318 doi: 10.1520/JTE11840J
    [27] Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials. Fatigue Fract Eng Mater Struct, 1998, 21(9): 1049 doi: 10.1046/j.1460-2695.1998.00104.x
    [28] Shi G, Atkinson H V, Sellars C M, et al. Comparison of extreme value statistics methods for predicting maximum inclusion size in clean steels. Ironmaking Steelmaking, 1999, 26(4): 239 doi: 10.1179/030192399677095
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  2650
  • HTML全文瀏覽量:  734
  • PDF下載量:  143
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-03-05
  • 刊出日期:  2021-04-26

目錄

    /

    返回文章
    返回