<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

硫化銅礦粒孔隙模型重構與溶液滲流模擬

尹升華 宋慶 陳威 陳勛

尹升華, 宋慶, 陳威, 陳勛. 硫化銅礦粒孔隙模型重構與溶液滲流模擬[J]. 工程科學學報, 2021, 43(4): 495-502. doi: 10.13374/j.issn2095-9389.2020.02.27.002
引用本文: 尹升華, 宋慶, 陳威, 陳勛. 硫化銅礦粒孔隙模型重構與溶液滲流模擬[J]. 工程科學學報, 2021, 43(4): 495-502. doi: 10.13374/j.issn2095-9389.2020.02.27.002
YIN Sheng-hua, SONG Qing, CHEN Wei, CHEN Xun. Pore model reconstruction of copper sulfide ore agglomerate and simulation of solution seepage[J]. Chinese Journal of Engineering, 2021, 43(4): 495-502. doi: 10.13374/j.issn2095-9389.2020.02.27.002
Citation: YIN Sheng-hua, SONG Qing, CHEN Wei, CHEN Xun. Pore model reconstruction of copper sulfide ore agglomerate and simulation of solution seepage[J]. Chinese Journal of Engineering, 2021, 43(4): 495-502. doi: 10.13374/j.issn2095-9389.2020.02.27.002

硫化銅礦粒孔隙模型重構與溶液滲流模擬

doi: 10.13374/j.issn2095-9389.2020.02.27.002
基金項目: 國家優秀青年科學基金資助項目(51722401);國家自然科學基金重點資助項目(51734001);中央高校基本科研業務費專項資金資助項目(FRF-TP-18-003C1)
詳細信息
    通訊作者:

    E-mail:SQ1213ueen@163.com

  • 中圖分類號: TD862

Pore model reconstruction of copper sulfide ore agglomerate and simulation of solution seepage

More Information
  • 摘要: 以次生硫化銅礦粉為原料,添加黏結劑、氯化鈉制備礦粒,并借助CT掃描技術、圖像處理及三維重構方法,開展了單個礦粒浸出試驗,探究了溶浸前后礦粒內部的孔隙變化;運用COMSOL Multiphysics模擬仿真軟件,構建了溶液在孔隙通道中流動的仿真模型。結果表明:經過一周時間的溶浸,礦粒內部孔隙的數目、平均體積、平均表面積及孔隙平均等效直徑分別增長了99%、151%、223%和90%,孔隙率增長了4倍,孔隙連通度增長了近2倍。在孔隙通道較狹窄的區域和底部區域,溶液的流速、壓力急劇增加,對礦粒結構的穩定性產生較大影響。

     

  • 圖  1  礦樣粒徑分布圖

    Figure  1.  Particle size distribution of ore samples

    圖  2  試驗礦粒。(a)溶浸時;(b)晾干后

    Figure  2.  Photographs of mineral agglomerate used in the test: (a) during leaching; (b) after drying

    圖  3  掃描原圖。(a)浸出前;(b)浸出后

    Figure  3.  Original CT scan images of mineral agglomerate: (a) before leaching; (b) after leaching

    圖  4  圖像預處理流程

    Figure  4.  Workflow of CT scan image preprocessing

    圖  5  礦粉掉落

    Figure  5.  Photograph of ore powder that dropped off the agglomerate

    圖  6  生成網格數據流程

    Figure  6.  Workflow for generating grid data

    圖  7  邊界條件。(a)導入網格數據;(b)入口;(c)出口

    Figure  7.  Boundary conditions: (a) imported grid data; (b) entrance; (c) export

    圖  8  速度流線圖。(a)流線間隔為0.1 μm;(b)流線間隔為0.01 μm

    Figure  8.  Streamline distribution of the solution: (a) streamline interval of 0.1 μm; (b) streamline interval of 0.01 μm

    圖  9  速度切面圖。(a) X方向;(b) Y方向;(c) Z方向

    Figure  9.  Velocity sections in different directions: (a) X direction; (b) Y direction; (c) Z direction

    圖  10  壓力分布圖。(a)壓力分布圖;(b)壓力等值線圖

    Figure  10.  Pressure profile: (a) pressure distribution; (b) pressure contour map

    表  1  礦樣主要元素質量分數

    Table  1.   Mass fractions of major elements in mineral samples %

    ElementsCuFeSCaOMgOAl2O3SiO2
    Mass fraction0.701.671.100.300.045.1991.00
    下載: 導出CSV

    表  2  銅物相分析結果(質量分數)

    Table  2.   Cu phase analysis results of mineral samples

    PhaseMass fraction/%
    Copper oxide0.04
    Primary copper sulfide0.05
    Secondary copper sulfide0.60
    Combined copper0.01
    Total0.70
    下載: 導出CSV

    表  3  礦粒孔隙參數變化

    Table  3.   Variation of pore parameters

    ParameterPore numberMean pore volume/(108 μm3)Average pore surface area/(106 μm2)Average equivalent pore diameter/μm
    Before leaching2881.711.16304
    After leaching5754.293.75579
    Growth rate/%9915122390
    下載: 導出CSV

    表  4  礦粒孔隙率及孔隙連通度變化

    Table  4.   Evolution of porosity and pore connectivity

    ParameterPorosity/%Growth rate/%Porosity connectivity/%Growth rate/%
    Before leaching3.2040029.96195
    After leaching16.0088.26
    下載: 導出CSV

    表  5  構建模型的關鍵參數

    Table  5.   Key parameters used in the model

    ParametersSymbolValue
    Density/(kg·m?3)ρ1100
    Temperature/KT298.13
    Dynamic viscosity/Pa·sμ0.9
    Initial pressure/PaP00.715
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Akinci G, Guven D E. Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination, 2011, 268(1-3): 221 doi: 10.1016/j.desal.2010.10.032
    [2] Zeng J, Li J, Gou M, et al. Effective strategy for improving sludge treatment rate and microbial mechanisms during chromium bioleaching of tannery sludge. Process Biochem, 2019, 83: 159 doi: 10.1016/j.procbio.2019.05.019
    [3] Yin S H, Chen W, Chen X, et al. Bacterial-mediated recovery of copper from low-grade copper sulfide using acid-processed rice straw. Bioresource Technol, 2019, 288: 121605 doi: 10.1016/j.biortech.2019.121605
    [4] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143

    尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143
    [5] Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores— —a brief overview. Hydrometallurgy, 2016, 165: 206 doi: 10.1016/j.hydromet.2015.09.001
    [6] Chen W, Yin S H, Qi Y, et al. Effect of additives on bioleaching of copper sulfide ores. J Central South Univ Sci Technol, 2019, 50(7): 1507

    陳威, 尹升華, 齊炎, 等. 添加劑對硫化銅礦生物浸出規律的影響. 中南大學學報:自然科學版, 2019, 50(7):1507
    [7] Zeng Y J, Li J H, Li T Q, et al. Technical application of agglomerated acidic heap leaching of clay bearing uranium ore in China. Uran Min Metall, 2002, 21(4): 182 doi: 10.3969/j.issn.1000-8063.2002.04.003

    曾毅君, 李建華, 李鐵球, 等. 中國含泥鈾礦酸法堆浸制粒技術的應用. 鈾礦冶, 2002, 21(4):182 doi: 10.3969/j.issn.1000-8063.2002.04.003
    [8] Liu X X, Wang L, Xie J P, et al. Experimental study on column leach of low grade copper oxide. Min Metall Eng, 2016, 36(1): 83 doi: 10.3969/j.issn.0253-6099.2016.01.021

    劉新星, 王龍, 謝建平, 等. 低品位氧化銅礦柱浸試驗研究. 礦冶工程, 2016, 36(1):83 doi: 10.3969/j.issn.0253-6099.2016.01.021
    [9] Chen W, Yin S H, Wu A X, et al. Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater. Bioresour Technol, 2020, 297: 122453 doi: 10.1016/j.biortech.2019.122453
    [10] Zhou A, Zhang Q, Bai R N, et al. Characterization of coal micro-pore structure and simulation on the seepage rules of low-pressure water based on CT scanning data. Minerals, 2016, 6(3): 78 doi: 10.3390/min6030078
    [11] Tang B W, Gao S, Wang Y G, et al. Pore structure analysis of electrolytic manganese residue based permeable brick by using industrial CT. Construct Build Mater, 2019, 208: 697 doi: 10.1016/j.conbuildmat.2019.03.066
    [12] Bell S L, Welch G D, Bennett P G. Development of ammoniacal lixiviants for the in-situ leaching of chalcopyrite. Hydrometallurgy, 1995, 39(1-3): 11 doi: 10.1016/0304-386X(95)00022-9
    [13] Yin S H, Chen W, Liu J M, et al. Agglomeration experiment of secondary copper sulfide ore. Chin J Eng, 2019, 41(9): 1127

    尹升華, 陳威, 劉家明, 等. 次生硫化銅礦制粒試驗. 工程科學學報, 2019, 41(9):1127
    [14] Nosrati A, Quast K, Xu D F, et al. Agglomeration and column leaching behaviour of nickel laterite ores: effect of ore mineralogy and particle size distribution. Hydrometallurgy, 2014, 146: 29 doi: 10.1016/j.hydromet.2014.03.004
    [15] Yin J S, He R G, Shen K N. Commercial tests of tailing briquetting-heap leaching in a certain gold mine. Gold, 2007, 28(2): 42 doi: 10.3969/j.issn.1001-1277.2007.02.012

    尹江生, 賀銳崗, 沈凱寧. 某金礦選礦廠尾礦制粒堆浸工業試驗. 黃金, 2007, 28(2):42 doi: 10.3969/j.issn.1001-1277.2007.02.012
    [16] Quaicoe I, Nosrati A, Skinner W, et al. Agglomeration and column leaching behaviour of goethitic and saprolitic nickel laterite ores. Miner Eng, 2014, 65: 1 doi: 10.1016/j.mineng.2014.04.001
    [17] Yin S H, Wang L M, Chen X, et al. Seepage law of solution inside ore granular under condition of different heap constructions. J Central South Univ Sci Technol, 2018, 49(4): 949

    尹升華, 王雷鳴, 陳勛, 等. 不同堆體結構下礦巖散體內溶液滲流規律. 中南大學學報: 自然科學版, 2018, 49(4):949
    [18] Yin S H, Wu A X, Hu K J, et al. Visualization of flow behavior during bioleaching of waste rock dumps under saturated and unsaturated conditions. Hydrometallurgy, 2013, 133: 1 doi: 10.1016/j.hydromet.2012.11.009
    [19] Xue Z L, Zhang Y Z, Liu Z Y, et al. Effects of ore shape on pore structure and seepage velocity field in heap leaching. China Min Mag, 2018, 27(12): 128

    薛振林, 張有志, 劉志義, 等. 礦石形狀對浸堆結構及滲流場影響機制. 中國礦業, 2018, 27(12):128
    [20] Liu C. Evolution of the Pore Structure and Flow in Granular Ore Heaps for Copper Oxides Acid Leaching[Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    劉超. 酸浸條件下氧化銅礦巖散體孔隙結構及滲流演化規律[學位論文]. 北京: 北京科技大學, 2017
    [21] Wu A X, Wang S Y, Yang B H. Effect of particle structure on permeability of leaching dump. Min Res Dev, 2011, 31(5): 22

    吳愛祥, 王少勇, 楊保華. 堆浸散體顆粒結構對溶浸液滲流規律的影響. 礦業研究與開發, 2011, 31(5):22
    [22] Lo A, Nosrati A, Addai-Mensah J. Particle and pore dynamics under column leaching of goethitic and saprolitic nickel laterite agglomerates. Adv Powder Technol, 2016, 27(6): 2370 doi: 10.1016/j.apt.2016.11.009
    [23] Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. Chin J Eng, 2016, 38(3): 328

    楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3):328
    [24] Bird M B, Butler S L, Hawkes C D, et al. Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL. Comput Geosci, 2014, 73: 6 doi: 10.1016/j.cageo.2014.08.009
    [25] Wu A X, Yin S H, Yao B H, et al. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy, 2007, 87(3-4): 124 doi: 10.1016/j.hydromet.2007.03.001
    [26] Lai C S, Yu W Z, Chen S Y. The parameters affecting on heap leaching of gold ore. Multipurpose Utilization Miner Resour, 2013(6): 9

    賴才書, 余文章, 陳森煜. 影響金礦堆浸工藝的因素. 礦產資源綜合利用, 2013(6):9
  • 加載中
圖(10) / 表(5)
計量
  • 文章訪問數:  3506
  • HTML全文瀏覽量:  880
  • PDF下載量:  78
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-27
  • 刊出日期:  2021-04-26

目錄

    /

    返回文章
    返回