<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

小方坯齒輪鋼連鑄過程中的宏觀偏析模擬

王亞棟 張立峰 張海杰

王亞棟, 張立峰, 張海杰. 小方坯齒輪鋼連鑄過程中的宏觀偏析模擬[J]. 工程科學學報, 2021, 43(4): 561-568. doi: 10.13374/j.issn2095-9389.2020.02.27.001
引用本文: 王亞棟, 張立峰, 張海杰. 小方坯齒輪鋼連鑄過程中的宏觀偏析模擬[J]. 工程科學學報, 2021, 43(4): 561-568. doi: 10.13374/j.issn2095-9389.2020.02.27.001
WANG Ya-dong, ZHANG Li-feng, ZHANG Hai-jie. Simulation of the macrosegregation in the gear steel billet continuous casting process[J]. Chinese Journal of Engineering, 2021, 43(4): 561-568. doi: 10.13374/j.issn2095-9389.2020.02.27.001
Citation: WANG Ya-dong, ZHANG Li-feng, ZHANG Hai-jie. Simulation of the macrosegregation in the gear steel billet continuous casting process[J]. Chinese Journal of Engineering, 2021, 43(4): 561-568. doi: 10.13374/j.issn2095-9389.2020.02.27.001

小方坯齒輪鋼連鑄過程中的宏觀偏析模擬

doi: 10.13374/j.issn2095-9389.2020.02.27.001
基金項目: 國家自然科學基金資助項目(U186026,51725402)
詳細信息
    通訊作者:

    E-mail:zhanglifeng@ysu.edu.cn

  • 中圖分類號: TF777.3

Simulation of the macrosegregation in the gear steel billet continuous casting process

More Information
  • 摘要: 基于國內某廠齒輪鋼小方坯連鑄生產過程,利用ProCAST軟件建立移動切片模型,能夠高效模擬連鑄過程中的宏觀偏析,模型分別模擬研究了不同過熱度、二冷水量和拉坯速度等對宏觀偏析的影響。模擬結果與碳偏析檢測結果吻合良好,驗證了移動切片模型模擬連鑄坯宏觀偏析的準確性。由于溶質浮力的影響,內弧側的宏觀偏析強于外弧側。隨著過熱度的增加,鑄坯中心碳偏析度從1.06增加至1.15。過熱度控制在25 ℃范圍內,可以保證鑄坯的宏觀碳偏析度控制在1.10范圍內。隨著連鑄二冷水量的增加,鑄坯中心偏析改善程度較小,鑄坯中心碳偏析度從1.16降低至1.13。隨著拉坯速度的增加,鑄坯中心偏析呈現加重的趨勢,鑄坯中心碳偏析度由1.14增加至1.21,拉坯速度控制在1.4 m·min–1范圍內,可保證鑄坯中心碳偏析度低于1.15。

     

  • 圖  1  移動切片模型

    Figure  1.  Moving slice model

    圖  2  鋼的熱物性參數。(a)熱導率;(b)密度;(c)熱焓;(d)黏度;(e)固相率

    Figure  2.  Thermophysical parameters of the steel: (a) conductivity; (b) density; (c) enthalpy; (d) viscosity; (e) solid fraction

    圖  3  計算得到的鑄坯表面溫度和測量結果的對比

    Figure  3.  Comparison between the calculated and measured results of the billet surface temperature

    圖  4  檢測得到的碳含量與模擬結果對比

    Figure  4.  Comparison between the calculated and measured results of the carbon content

    圖  5  過熱度對鑄坯宏觀偏析的影響

    Figure  5.  Effect of superheat on the macrosegregation of the billet

    圖  6  過熱度對鑄坯宏觀偏析的定量影響

    Figure  6.  Effect of superheat on the quantized results of the macrosegregation

    圖  7  二冷水量對鑄坯宏觀偏析的影響

    Figure  7.  Effect of secondary cooling water flow on macrosegregation of the billet

    圖  8  二冷水量對鑄坯宏觀偏析的定量影響

    Figure  8.  Effect of secondary cooling water flow on the quantized results of macrosegregation

    圖  9  拉坯速度對鑄坯宏觀偏析的影響

    Figure  9.  Effect of casting speed on macrosegregation of the billet

    圖  10  拉坯速度對鑄坯宏觀偏析的定量影響

    Figure  10.  Effect of casting speed on the quantized results of macrosegregation

    圖  11  拉坯速度對凝固坯殼厚度的影響

    Figure  11.  Effect of casting speed on the shell thickness of the billet

    表  1  齒輪鋼成分(質量分數)

    Table  1.   Element content of the gear steel %

    CSiMnPSAlCrTi
    0.2150.2400.8900.0200.0200.0201.0900.006
    下載: 導出CSV

    表  2  各區長度和冷卻水量

    Table  2.   Length and cooling water flow in each zone

    Cooling zoneWater flow/(m3·h?1)Length/m
    Mold1080.9
    Zone13.320.35
    Zone22.201.78
    Zone31.031.85
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ludwig A, Wu M H, Kharicha A. On macrosegregation. Metall Mater Trans A, 2015, 46(11): 4854 doi: 10.1007/s11661-015-2959-4
    [2] Ahmadein M, Wu M H, Ludwig A. Analysis of macrosegregation formation and columnar-to-equiaxed transition during solidification of Al-4wt. %Cu ingot using a 5-phase model. J Cryst Growth, 2015, 417: 65 doi: 10.1016/j.jcrysgro.2014.07.039
    [3] Lesoult G. Macrosegregation in steel strands and ingots: characterisation, formation and consequences. Mater Sci Eng A, 2005, 413-414: 19 doi: 10.1016/j.msea.2005.08.203
    [4] Flemings M C. Our understanding of macrosegregation: past and present. ISIJ Int, 2000, 40(9): 833 doi: 10.2355/isijinternational.40.833
    [5] Oh K S, Chang Y W. Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring. ISIJ Int, 1995, 35(7): 866 doi: 10.2355/isijinternational.35.866
    [6] Vu?anovi? I, Vertnik R, ?arler B. A simple slice model for prediction of macrosegregation in continuously cast billets // The 3rd International Conference on Advances in Solidification Processes. Aachen, 2011: 012056.
    [7] Wu M H, Kharicha A, Ludwig A. Discussion on modeling capability for macrosegregation. High Temp Mater Processes, 2017, 36(5): 531 doi: 10.1515/htmp-2016-0133
    [8] An H H, Bao Y P, Wang M, et al. Effects of electromagnetic stirring on fluid flow and temperature distribution in billet continuous casting mould and solidification structure of 55SiCr. Metall Res Technol, 2018, 115(1): 103 doi: 10.1051/metal/2017075
    [9] Li J C, Wang B F, Ma Y L, et al. Effect of complex electromagnetic stirring on inner quality of high carbon steel bloom. Mater Sci Eng A, 2006, 425(1-2): 201 doi: 10.1016/j.msea.2006.03.061
    [10] Bleck W, Wang W J, Bulte R. Influence of soft reduction on internal quality of high carbon steel billets. Steel Res Int, 2006, 77(7): 485 doi: 10.1002/srin.200606418
    [11] Wang W P, Liu L X, Li H, et al. High carbon stranded steel SWRH82B central carbon segregation control practice. Special Steel, 2019, 40(5): 24 doi: 10.3969/j.issn.1003-8620.2019.05.006

    王文培, 劉列喜, 李海, 等. 高碳絞線鋼SWRH82B中心碳偏析控制實踐. 特殊鋼, 2019, 40(5):24 doi: 10.3969/j.issn.1003-8620.2019.05.006
    [12] Jiang D B, Wang W L, Luo S, et al. Numerical simulation of slab centerline segregation with mechanical reduction during continuous casting process. Int J Heat Mass Transfer, 2018, 122: 315 doi: 10.1016/j.ijheatmasstransfer.2018.01.100
    [13] Wu M H, Ludwig A. A three-phase model for mixed columnar-equiaxed solidification. Metall Mater Trans A, 2006, 37(5): 1613 doi: 10.1007/s11661-006-0104-0
    [14] Sun H B, Zhang J Q. Study on the macrosegregation behavior for the bloom continuous casting: model development and validation. Metall Mater Trans B, 2014, 45(3): 1133 doi: 10.1007/s11663-013-9986-6
    [15] Ma C W. Numerical Simulation on Centerline Segregation in Continuous Casting Process[Dissertation]. Beijing: Tsinghua University, 2004

    馬長文. 連鑄過程中心偏析的數值模擬研究[學位論文]. 北京: 清華大學, 2004
    [16] Chen H B. Investigations on Solute Redistribution during the Solidification of Iron-based Multicomponent Alloys and Centerline Segregation in Continuous Casting Slab[Dissertation]. Chongqing: Chongqing University, 2018

    陳華標. 鐵基多元合金凝固溶質再分配與連鑄板坯中心偏析研究[學位論文]. 重慶: 重慶大學, 2018
    [17] Yang X G. Control of Transverse Corner Cracks on Low Carbon Micro-alloyed Continuous Casting Slabs[Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    楊小剛. 低碳微合金鋼鑄坯角部橫裂紋控制研究[學位論文]. 北京: 北京科技大學, 2016
    [18] Cabrera-Marrero J M, Carreno-Galindo V, Morales R D, et al. Macro-micro modeling of the dendritic microstructure of steel billets processed by continuous casting. ISIJ Int, 1998, 38(8): 812 doi: 10.2355/isijinternational.38.812
    [19] Zhang H J. Numerical Simulation and Optimization on the Macrosegregation and Solidificatin Structure of Oil Casting Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    張海杰. 石油套管鋼連鑄坯宏觀偏析和低倍組織的模擬與優化[學位論文]. 北京: 北京科技大學, 2016
    [20] Dong Q P. Numerical Study on the Porosity and Macrosegregation in Continuously Cast Billet [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    董其鵬. 方坯連鑄疏松及宏觀偏析的模擬研究[學位論文]. 北京: 北京科技大學, 2018
    [21] Wang X L. Study on Heat Transfer Behavior of High Speed Continuous Casting of Steel Slabs [Dissertation]. Beijing: University of Science and Technology Beijing, 2014

    王曉連. 高拉速板坯連鑄傳熱行為研究[學位論文]. 北京: 北京科技大學, 2014
    [22] Morales R D, Lopez A G, Olivares I M. Heat transfer analysis during water spray cooling of steel rods. ISIJ Int, 1990, 30(1): 48 doi: 10.2355/isijinternational.30.48
    [23] Wang Q Q, Zhang L F. Influence of FC-mold on the full solidification of continuous casting slab. JOM, 2016, 68(8): 2170 doi: 10.1007/s11837-016-1882-5
    [24] Wang Y, Zhang L F, Zhang H J, et al. Mechanism and control of sulfide inclusion accumulation in CET zone of 37Mn5 round billet. Metall Mater Trans B, 2017, 48(2): 1004 doi: 10.1007/s11663-016-0886-4
    [25] Choudhary S K, Ghosh A. Morphology and macrosegregation in continuously cast steel billets. ISIJ Int, 1994, 34(4): 338 doi: 10.2355/isijinternational.34.338
    [26] Chen H B, Long M J, Chen D F, et al. Numerical study on the characteristics of solute distribution and the formation of centerline segregation in continuous casting (CC) slab. Int J Heat Mass Transfer, 2018, 126: 843 doi: 10.1016/j.ijheatmasstransfer.2018.05.081
    [27] Maidorn C, Blind D. Solidification and segregation in heavy forging ingots. Nucl Eng Des, 1985, 84(2): 285 doi: 10.1016/0029-5493(85)90199-2
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  4467
  • HTML全文瀏覽量:  879
  • PDF下載量:  228
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-27
  • 刊出日期:  2021-04-26

目錄

    /

    返回文章
    返回