Simulation of the macrosegregation in the gear steel billet continuous casting process
-
摘要: 基于國內某廠齒輪鋼小方坯連鑄生產過程,利用ProCAST軟件建立移動切片模型,能夠高效模擬連鑄過程中的宏觀偏析,模型分別模擬研究了不同過熱度、二冷水量和拉坯速度等對宏觀偏析的影響。模擬結果與碳偏析檢測結果吻合良好,驗證了移動切片模型模擬連鑄坯宏觀偏析的準確性。由于溶質浮力的影響,內弧側的宏觀偏析強于外弧側。隨著過熱度的增加,鑄坯中心碳偏析度從1.06增加至1.15。過熱度控制在25 ℃范圍內,可以保證鑄坯的宏觀碳偏析度控制在1.10范圍內。隨著連鑄二冷水量的增加,鑄坯中心偏析改善程度較小,鑄坯中心碳偏析度從1.16降低至1.13。隨著拉坯速度的增加,鑄坯中心偏析呈現加重的趨勢,鑄坯中心碳偏析度由1.14增加至1.21,拉坯速度控制在1.4 m·min–1范圍內,可保證鑄坯中心碳偏析度低于1.15。Abstract: Macrosegregation forms due to relative motion between liquid and solid phases on the macro scale during solidification. As macrosegregation is formed during a solidification process, it is difficult to remove it in the subsequent rolling and heat treatment processes, thereby deteriorating the mechanical properties and stability of products. Studies of macrosegregation of billets for industrial trials have become a challenge due to the high temperature of the casting process. To improve macrosegregation of billet, a moving slice model was developed using the ProCAST software based on a continuous casting process of gear steel billet in a domestic steel mill. During the continuous casting process, macrosegregation can be calculated using the above model. The effects of superheat, secondary cooling water flows, and casting speed on macrosegregation were simulated. These results were consistent with the measured outcomes of carbon macrosegregation, validating the moving slice model to calculate the macrosegregation of billet. The solute concentration on the loose side is higher than that on the fixed side due to solute buoyancy. The degree of carbon segregation in the billet center increases from 1.06 to 1.15, with an increase in superheat, which should be controlled below 25 ℃ to ensure the degree of carbon segregation within 1.10. However, the degree of carbon segregation in the billet center decreases from 1.16 to 1.13, with an increase of secondary cooling water flow and a little improvement in central segregation. With an increase in casting speed, the central segregation becomes serious, and the degree of carbon segregation in the billet center increases from 1.14 to 1.21. However, when the casting speed is lower than 1.4 m·min?1, the degree of carbon segregation in the billet center comes lower than 1.15.
-
Key words:
- macrosegregation /
- superheat /
- secondary cooling water flow /
- casting speed /
- gear steel
-
表 1 齒輪鋼成分(質量分數)
Table 1. Element content of the gear steel
% C Si Mn P S Al Cr Ti 0.215 0.240 0.890 0.020 0.020 0.020 1.090 0.006 表 2 各區長度和冷卻水量
Table 2. Length and cooling water flow in each zone
Cooling zone Water flow/(m3·h?1) Length/m Mold 108 0.9 Zone1 3.32 0.35 Zone2 2.20 1.78 Zone3 1.03 1.85 259luxu-164 -
參考文獻
[1] Ludwig A, Wu M H, Kharicha A. On macrosegregation. Metall Mater Trans A, 2015, 46(11): 4854 doi: 10.1007/s11661-015-2959-4 [2] Ahmadein M, Wu M H, Ludwig A. Analysis of macrosegregation formation and columnar-to-equiaxed transition during solidification of Al-4wt. %Cu ingot using a 5-phase model. J Cryst Growth, 2015, 417: 65 doi: 10.1016/j.jcrysgro.2014.07.039 [3] Lesoult G. Macrosegregation in steel strands and ingots: characterisation, formation and consequences. Mater Sci Eng A, 2005, 413-414: 19 doi: 10.1016/j.msea.2005.08.203 [4] Flemings M C. Our understanding of macrosegregation: past and present. ISIJ Int, 2000, 40(9): 833 doi: 10.2355/isijinternational.40.833 [5] Oh K S, Chang Y W. Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring. ISIJ Int, 1995, 35(7): 866 doi: 10.2355/isijinternational.35.866 [6] Vu?anovi? I, Vertnik R, ?arler B. A simple slice model for prediction of macrosegregation in continuously cast billets // The 3rd International Conference on Advances in Solidification Processes. Aachen, 2011: 012056. [7] Wu M H, Kharicha A, Ludwig A. Discussion on modeling capability for macrosegregation. High Temp Mater Processes, 2017, 36(5): 531 doi: 10.1515/htmp-2016-0133 [8] An H H, Bao Y P, Wang M, et al. Effects of electromagnetic stirring on fluid flow and temperature distribution in billet continuous casting mould and solidification structure of 55SiCr. Metall Res Technol, 2018, 115(1): 103 doi: 10.1051/metal/2017075 [9] Li J C, Wang B F, Ma Y L, et al. Effect of complex electromagnetic stirring on inner quality of high carbon steel bloom. Mater Sci Eng A, 2006, 425(1-2): 201 doi: 10.1016/j.msea.2006.03.061 [10] Bleck W, Wang W J, Bulte R. Influence of soft reduction on internal quality of high carbon steel billets. Steel Res Int, 2006, 77(7): 485 doi: 10.1002/srin.200606418 [11] Wang W P, Liu L X, Li H, et al. High carbon stranded steel SWRH82B central carbon segregation control practice. Special Steel, 2019, 40(5): 24 doi: 10.3969/j.issn.1003-8620.2019.05.006王文培, 劉列喜, 李海, 等. 高碳絞線鋼SWRH82B中心碳偏析控制實踐. 特殊鋼, 2019, 40(5):24 doi: 10.3969/j.issn.1003-8620.2019.05.006 [12] Jiang D B, Wang W L, Luo S, et al. Numerical simulation of slab centerline segregation with mechanical reduction during continuous casting process. Int J Heat Mass Transfer, 2018, 122: 315 doi: 10.1016/j.ijheatmasstransfer.2018.01.100 [13] Wu M H, Ludwig A. A three-phase model for mixed columnar-equiaxed solidification. Metall Mater Trans A, 2006, 37(5): 1613 doi: 10.1007/s11661-006-0104-0 [14] Sun H B, Zhang J Q. Study on the macrosegregation behavior for the bloom continuous casting: model development and validation. Metall Mater Trans B, 2014, 45(3): 1133 doi: 10.1007/s11663-013-9986-6 [15] Ma C W. Numerical Simulation on Centerline Segregation in Continuous Casting Process[Dissertation]. Beijing: Tsinghua University, 2004馬長文. 連鑄過程中心偏析的數值模擬研究[學位論文]. 北京: 清華大學, 2004 [16] Chen H B. Investigations on Solute Redistribution during the Solidification of Iron-based Multicomponent Alloys and Centerline Segregation in Continuous Casting Slab[Dissertation]. Chongqing: Chongqing University, 2018陳華標. 鐵基多元合金凝固溶質再分配與連鑄板坯中心偏析研究[學位論文]. 重慶: 重慶大學, 2018 [17] Yang X G. Control of Transverse Corner Cracks on Low Carbon Micro-alloyed Continuous Casting Slabs[Dissertation]. Beijing: University of Science and Technology Beijing, 2016楊小剛. 低碳微合金鋼鑄坯角部橫裂紋控制研究[學位論文]. 北京: 北京科技大學, 2016 [18] Cabrera-Marrero J M, Carreno-Galindo V, Morales R D, et al. Macro-micro modeling of the dendritic microstructure of steel billets processed by continuous casting. ISIJ Int, 1998, 38(8): 812 doi: 10.2355/isijinternational.38.812 [19] Zhang H J. Numerical Simulation and Optimization on the Macrosegregation and Solidificatin Structure of Oil Casting Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2016張海杰. 石油套管鋼連鑄坯宏觀偏析和低倍組織的模擬與優化[學位論文]. 北京: 北京科技大學, 2016 [20] Dong Q P. Numerical Study on the Porosity and Macrosegregation in Continuously Cast Billet [Dissertation]. Beijing: University of Science and Technology Beijing, 2018董其鵬. 方坯連鑄疏松及宏觀偏析的模擬研究[學位論文]. 北京: 北京科技大學, 2018 [21] Wang X L. Study on Heat Transfer Behavior of High Speed Continuous Casting of Steel Slabs [Dissertation]. Beijing: University of Science and Technology Beijing, 2014王曉連. 高拉速板坯連鑄傳熱行為研究[學位論文]. 北京: 北京科技大學, 2014 [22] Morales R D, Lopez A G, Olivares I M. Heat transfer analysis during water spray cooling of steel rods. ISIJ Int, 1990, 30(1): 48 doi: 10.2355/isijinternational.30.48 [23] Wang Q Q, Zhang L F. Influence of FC-mold on the full solidification of continuous casting slab. JOM, 2016, 68(8): 2170 doi: 10.1007/s11837-016-1882-5 [24] Wang Y, Zhang L F, Zhang H J, et al. Mechanism and control of sulfide inclusion accumulation in CET zone of 37Mn5 round billet. Metall Mater Trans B, 2017, 48(2): 1004 doi: 10.1007/s11663-016-0886-4 [25] Choudhary S K, Ghosh A. Morphology and macrosegregation in continuously cast steel billets. ISIJ Int, 1994, 34(4): 338 doi: 10.2355/isijinternational.34.338 [26] Chen H B, Long M J, Chen D F, et al. Numerical study on the characteristics of solute distribution and the formation of centerline segregation in continuous casting (CC) slab. Int J Heat Mass Transfer, 2018, 126: 843 doi: 10.1016/j.ijheatmasstransfer.2018.05.081 [27] Maidorn C, Blind D. Solidification and segregation in heavy forging ingots. Nucl Eng Des, 1985, 84(2): 285 doi: 10.1016/0029-5493(85)90199-2 -