Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms
-
摘要: 為了深入探討膠磷礦難選的具體原因,采用化學分析、X射線衍射以及礦物自動分析系統(AMICS)測試手段對云南某膠磷礦浮選給料進行了系統深入的工藝礦物學研究,探索了該礦樣難浮選分離的內在機理。結果表明:該樣品中磷主要以氟磷灰石形式存在,其脈石礦物以白云石和石英為主。氟磷灰石的嵌布粒度較細,主要分布于10~75 μm的粒度范圍,其單體解離度為59.17%。除了以單體的形式存在以外,氟磷灰石主要與白云石、石英連生,連生體的質量分數分別為26.23%和9.92%。而白云石和石英的單體解離度相對較低,分別為46.82%和39.10%。進行了粗選脫鎂、一粗兩掃脫硅的閉路流程浮選試驗,獲得了精礦P2O5品位為29.75%、P2O5回收率為81.95%,SiO2品位為12.63%的浮選指標。結合工藝礦物學分析結果,指出該浮選樣品中膠磷礦嵌布粒度細、難以獲得較好的解離度、泥化嚴重是浮選難于獲得更好指標的主要原因。Abstract: It is a global fact that the mineral ores degrade to the poor grade status and the various properties of ores are adversely altered such as fine dissemination and complex composition due to the continuous exploitation and utilization of phosphate rock resources. Consequently, separation of minerals has become a difficult and daunting task. The automatic mineral identification and characterization system (AMICS) is mostly used only for mineral characterization. There is no much research and literature on process mineralogy that integrates research parameters with flotation test results to quantitatively explore the mechanism of difficulties or problems faced during mineral separation. In this paper, to further explore and analyze the specific reasons for difficult problems faced while separating collophanite, a systematic in-depth mineralogical analysis based on the chemical analyses, X-ray diffraction, and AMICS has been performed on a refractory collophane flotation feed sample from Yunnan, China. The results show that the phosphorus in the sample mainly exists in the form of fluorapatite and also present in the gangue minerals, which are primarily dolomite and quartz. Fluorapatite has a fine dissemination particle size, which is in the range of 10–75 μm with a degree of mineral liberation 59.17%. Apart from existing in the form of liberated particles, fluorapatite is also present in dolomite and quartz as a composite particle and the mass fraction of composition in dolomite and quartz is found to be 26.23% and 9.92%, respectively. Further, dolomite and quartz relatively have a low degree of mineral liberation with the liberation degree of 46.82% and 39.10%, respectively. The closed-circuit flotation test was carried out with a rougher flotation to remove magnesium. Further a roughing and two stages of scavenging is performed which obtained the flotation performance of concentrate P2O5 grade of 29.75%, P2O5 recovery of 81.95%, and SiO2 grade of 12.63%. When the results were studied together with the mineralogical analysis results, it is found that the fine dissemination particle size of collophanite, the poor degree of mineral liberation, and the serious slime generation are the main causes for not able to achieving a better performance in separation of minerals.
-
表 1 浮選藥劑
Table 1. Flotation reagents
Name Application Specifications Manufacturer Hydrochloric acid pH Regulator AR Aladdin Sodium hexametaphosphate Depressant AR Aladdin Sodium oleate Dolomite collector AR Aladdin KDJ Quartz collector AR Made in laboratory Notice:AR means analytical reagent. 表 2 原礦化學多元素分析結果
Table 2. Results of chemical multi-element analysis of raw ore
% P2O5 MgO SiO2 Al2O3 F CaO Fe2O3 21.23 6.41 14.08 1.58 3.00 51.01 1.747 K2O TiO2 MnO ZnO SrO ZrO2 Na2O 0.448 0.096 0.0691 0.0215 0.0753 0.0031 0.23 表 3 原礦樣品主要礦物的質量分數
Table 3. Mass fraction of main minerals in raw ore samples
% Fluorapatite Dolomite Quartz Augite Orthoclase Kimzeyite 60.96 23.73 10.95 0.1 0.3 0.96 Armstrongite Isokite Calcite Illite Others 0.89 0.12 0.37 0.51 1.11 表 4 氟磷灰石的連體情況統計
Table 4. Statistics on composite particles of fluorapatite
% The mosaic
typeFluorapatite Fluorapatite–
dolomiteFluorapatite–
quartzFluorapatite–
otherMass fraction 59.57 26.23 9.92 4.27 表 5 白云石連體情況
Table 5. Statistics of composite particles of dolomite
% The mosaic
typeDolomite Dolomite–
fluorapatiteDolomite–
quartzDolomite–
otherMass fraction 46.20 43.67 6.09 4.04 表 6 石英連體情況
Table 6. Statistics of composite particles of quartz
% The mosaic
typeQuartz Quartz–
fluorapatiteQuartz–
dolomiteQuartz–
otherMass fraction 41.73 39.04 11.18 8.05 259luxu-164 -
參考文獻
[1] Cui R G, Zhang Y F, Guo J, et al. Development strategy of phosphate rock in China under global allocation of resources. Eng Sci, 2019, 21(1): 128崔榮國, 張艷飛, 郭娟, 等. 資源全球配置下的中國磷礦發展策略. 中國工程科學, 2019, 21(1):128 [2] Zhang L, Yang H F, Feng A S, et al. Study on general situation and analysis of supply and demand of global phosphate resources. Conserv Utilization Miner Resour, 2017(5): 105張亮, 楊卉芃, 馮安生, 等. 全球磷礦資源開發利用現狀及市場分析. 礦產保護與利用, 2017(5):105 [3] Liu X, Li C X, Luo H H, et al. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int J Miner Process, 2017, 165: 20 doi: 10.1016/j.minpro.2017.06.004 [4] Yang H Y, Xiao J F, Xia Y, et al. Origin of the Ediacaran Weng’an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. J Asian Earth Sci, 2019, 182: 103931 doi: 10.1016/j.jseaes.2019.103931 [5] Li W, Gao H, Luo Y J, et al. Status, trends and suggestions of phosphorus ore resources at home and abroad. China Min Mag, 2015, 24(6): 6 doi: 10.3969/j.issn.1004-4051.2015.06.003李維, 高輝, 羅英杰, 等. 國內外磷礦資源利用現狀、趨勢分析及對策建議. 中國礦業, 2015, 24(6):6 doi: 10.3969/j.issn.1004-4051.2015.06.003 [6] Abouzeid A Z M. Physical and thermal treatment of phosphate ores——an overview. Int J Miner Process, 2008, 85(4): 59 doi: 10.1016/j.minpro.2007.09.001 [7] Zhao F T, Li R L, Liu L F, et al. Discussion on double-reverse flotation desilication process of carbonate collophanite in Yunnan. Ind Miner Process, 2019, 48(8): 48趙鳳婷, 李若蘭, 劉麗芬, 等. 云南某碳酸鹽型膠磷礦雙反浮選脫硅工藝流程探討. 化工礦物與加工, 2019, 48(8):48 [8] Zhou Z F, Chen M X, Sheng X F, et al. Double-reverse flotation test on medium and low grade collophanite from Fangmashan. Ind Miner Process, 2016, 45(5): 5周澤富, 陳明祥, 盛先芳, 等. 放馬山中低品位膠磷礦雙反浮選試驗研究. 化工礦物與加工, 2016, 45(5):5 [9] Zhou M A, Dai C, Liu L F, et al. Transformation of flotation column in Kunyang phosphate flotation plant. Mod Min, 2016, 32(6): 75 doi: 10.3969/j.issn.1674-6082.2016.06.028周明安, 戴川, 劉麗芬, 等. 昆陽磷礦浮選廠浮選柱的改造. 現代礦業, 2016, 32(6):75 doi: 10.3969/j.issn.1674-6082.2016.06.028 [10] Liu A, Han F, Li Z H, et al. Research progress of nano-bubble in micro-fine mineral flotation. Conserv Utilization Miner Resour, 2018(3): 81劉安, 韓峰, 李志紅, 等. 納米氣泡在微細粒礦物浮選中的應用研究進展. 礦產保護與利用, 2018(3):81 [11] Hoang D H, Kupka N, Peuker U A, et al. Flotation study of fine grained carbonaceous sedimentary apatite ore-Challenges in process mineralogy and impact of hydrodynamics. Miner Eng, 2018, 121: 196 doi: 10.1016/j.mineng.2018.03.021 [12] Gui X H, Xing Y W, Wang B, et al. Fine coal flotation process intensification: part 1-a general overview of the state-of-the-art of the related research work conducted both within and abroad. Coal Prepar Technol, 2017(1): 93桂夏輝, 邢耀文, 王波, 等. 煤泥浮選過程強化之一——國內外研究現狀篇. 選煤技術, 2017(1):93 [13] Hoang D H, Hassanzadeh A, Peuker U A, et al. Impact of flotation hydrodynamics on the optimization of fine-grained carbonaceous sedimentary apatite ore beneficiation. Powder Technol, 2019, 345: 223 doi: 10.1016/j.powtec.2019.01.014 [14] Yang W Q, Fang S X, Pang J T, et al. Determination of collophane monomer dissociation degree under different grinding fineness and its use in flotation. J Wuhan Inst Technol, 2014, 36(4): 31 doi: 10.3969/j.issn.1674-2869.2014.04.007楊穩權, 方世祥, 龐建濤, 等. 膠磷礦不同磨礦細度單體解離度測定及其浮選應用. 武漢工程大學學報, 2014, 36(4):31 doi: 10.3969/j.issn.1674-2869.2014.04.007 [15] Leistner T, Embrechts M, Lei?ner T, et al. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner Eng, 2016, 96-97: 94 doi: 10.1016/j.mineng.2016.06.020 [16] Leistner T, Peuker U A, Rudolph M. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Miner Eng, 2017, 109: 1 doi: 10.1016/j.mineng.2017.02.005 [17] Luttrell G H, Yoon R H. A hydrodynamic model for bubble-particle attachment. J Colloid Interface Sci, 1992, 154(1): 129 doi: 10.1016/0021-9797(92)90085-Z [18] Gu Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser. J Miner Mater Charact Eng, 2003, 2(1): 33 [19] Fang F Y, Wang J M. The mineralogy characteristics of overflow product from hydrocyclone in the Yunnan Phosphorite Mine. Value Eng, 2019, 38(8): 162方福躍, 王靜明. 云南某磷礦選礦廠旋流器溢流產品工藝礦物學研究. 價值工程, 2019, 38(8):162 [20] Li H Q, Zhang W, Zheng H F, et al. Process mineralogy study of phosphate ore in Dayukou area. Ind Miner Process, 2019, 48(12): 43李洪強, 張文, 鄭惠方, 等. 大峪口膠磷礦工藝礦物學研究. 化工礦物與加工, 2019, 48(12):43 [21] Han M. Analysis of application of technological mineralogy in mineral processing. World Nonferrous Met, 2018(13): 242 doi: 10.3969/j.issn.1002-5065.2018.13.134韓明. 工藝礦物學在礦物加工中的應用分析. 世界有色金屬, 2018(13):242 doi: 10.3969/j.issn.1002-5065.2018.13.134 [22] Zhang Q, He F Y, Mao S, et al. Dissemination characteristics and grinding fineness of collophanite and dolomite. Ind Miner Process, 2010, 39(12): 8 doi: 10.3969/j.issn.1008-7524.2010.12.003張覃, 何發鈺, 卯松, 等. 膠磷礦和白云石的嵌布特征及磨礦細度試驗. 化工礦物與加工, 2010, 39(12):8 doi: 10.3969/j.issn.1008-7524.2010.12.003 [23] Lei?ner T, Hoang D H, Rudolph M, et al. A mineral liberation study of grain boundary fracture based on measurements of the surface exposure after milling. Int J Miner Process, 2016, 156: 3 doi: 10.1016/j.minpro.2016.08.014 [24] de Medeiros A R S, Baltar C A M. Importance of collector chain length in flotation of fine particles. Miner Eng, 2018, 122: 179 doi: 10.1016/j.mineng.2018.03.008 [25] Zhang Q, Tang X F, Liu J, et al. Process mineralogy of gravity concentrate of Anshan iron mine. Met Mine, 2019(2): 183張琦, 唐學飛, 劉杰, 等. 鞍山式鐵礦重選精礦工藝礦物學研究. 金屬礦山, 2019(2):183 [26] Zhao F T, Zhou Q B, Pang J T, et al. Summary of research status of desilication of collophane. Phosphate Compd Fertilizer, 2019, 34(6): 33 doi: 10.3969/j.issn.1007-6220.2019.06.011趙鳳婷, 周瓊波, 龐建濤, 等. 磷礦脫硅研究現狀概述. 磷肥與復肥, 2019, 34(6):33 doi: 10.3969/j.issn.1007-6220.2019.06.011 [27] Vieira A M, Peres A E C. The effect of amine type, pH, and size range in the flotation of quartz. Miner Eng, 2007, 20(10): 1008 doi: 10.1016/j.mineng.2007.03.013 [28] Yu Y X, Ma L Q, Zhang Z L, et al. Mechanism of entrainment and slime coating on coal flotation. J China Coal Soc, 2015, 40(3): 652于躍先, 馬力強, 張仲玲, 等. 煤泥浮選過程中的細泥夾帶與罩蓋機理. 煤炭學報, 2015, 40(3):652 [29] Yao J, Xue J W, Li D, et al. Effects of fine-coarse particles interaction on flotation separation and interaction energy calculation. Part Sci Technol, 2018, 36(1): 11 doi: 10.1080/02726351.2016.1205687 [30] Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8 [31] Song Z X, Han J K, Wang W Z, et al. Development and application status of flotation column technology. Met Mine, 2019(6): 20宋子翔, 韓繼康, 王偉之, 等. 浮選柱技術發展與應用現狀. 金屬礦山, 2019(6):20 [32] Fan M M, Tao D, Honaker R, et al. Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis. Min Sci Technol (China) , 2010, 20(2): 159 doi: 10.1016/S1674-5264(09)60179-4 -