<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

云南某膠磷礦AMICS工藝礦物學研究及其難選機理探討

吳中賢 陶東平

吳中賢, 陶東平. 云南某膠磷礦AMICS工藝礦物學研究及其難選機理探討[J]. 工程科學學報, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001
引用本文: 吳中賢, 陶東平. 云南某膠磷礦AMICS工藝礦物學研究及其難選機理探討[J]. 工程科學學報, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001
WU Zhong-xian, TAO Dong-ping. Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001
Citation: WU Zhong-xian, TAO Dong-ping. Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511. doi: 10.13374/j.issn2095-9389.2020.02.24.001

云南某膠磷礦AMICS工藝礦物學研究及其難選機理探討

doi: 10.13374/j.issn2095-9389.2020.02.24.001
基金項目: 遼寧省攀登學者人才資助項目;遼寧省重點資助項目(2017230002)
詳細信息
    通訊作者:

    E-mail:dptao@qq.com

  • 中圖分類號: TD912

Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms

More Information
  • 摘要: 為了深入探討膠磷礦難選的具體原因,采用化學分析、X射線衍射以及礦物自動分析系統(AMICS)測試手段對云南某膠磷礦浮選給料進行了系統深入的工藝礦物學研究,探索了該礦樣難浮選分離的內在機理。結果表明:該樣品中磷主要以氟磷灰石形式存在,其脈石礦物以白云石和石英為主。氟磷灰石的嵌布粒度較細,主要分布于10~75 μm的粒度范圍,其單體解離度為59.17%。除了以單體的形式存在以外,氟磷灰石主要與白云石、石英連生,連生體的質量分數分別為26.23%和9.92%。而白云石和石英的單體解離度相對較低,分別為46.82%和39.10%。進行了粗選脫鎂、一粗兩掃脫硅的閉路流程浮選試驗,獲得了精礦P2O5品位為29.75%、P2O5回收率為81.95%,SiO2品位為12.63%的浮選指標。結合工藝礦物學分析結果,指出該浮選樣品中膠磷礦嵌布粒度細、難以獲得較好的解離度、泥化嚴重是浮選難于獲得更好指標的主要原因。

     

  • 圖  1  主要礦物粒度分布

    Figure  1.  Particle size distribution of main minerals

    圖  2  各粒級下氟磷灰石與其他礦物的連生情況

    Figure  2.  Association of fluorapatite with other minerals under different grain sizes

    圖  3  各粒級下白云石與其他礦物的連生情況

    Figure  3.  Association of dolomite with other minerals under different grain sizes

    圖  4  白云石與氟磷灰石連生情況

    Figure  4.  Association of dolomite and fluorapatite

    圖  5  各粒級下石英與其他礦物的連生情況

    Figure  5.  Association of quartz with other minerals under different grain sizes

    圖  6  石英與氟磷灰石連生情況

    Figure  6.  Association of quartz and fluorapatite

    圖  7  不同粒級產品的單體含量

    Figure  7.  Liberated particle content of products with different particle sizes

    圖  8  開路流程試驗

    Figure  8.  Open circuit flotation flowsheet test

    圖  9  開路流程各產品粒度分析

    Figure  9.  Particle size analysis of each product in the open circuit process

    圖  10  閉路浮選流程試驗

    Figure  10.  Closed-circuit flotation flowsheet

    圖  11  各產品中P2O5分布率與顆粒粒度的關系

    Figure  11.  Relationship between P2O5 distribution rate and particle size in various products

    表  1  浮選藥劑

    Table  1.   Flotation reagents

    NameApplicationSpecificationsManufacturer
    Hydrochloric acidpH RegulatorARAladdin
    Sodium hexametaphosphateDepressantARAladdin
    Sodium oleateDolomite collectorARAladdin
    KDJQuartz collectorARMade in laboratory
    Notice:AR means analytical reagent.
    下載: 導出CSV

    表  2  原礦化學多元素分析結果

    Table  2.   Results of chemical multi-element analysis of raw ore %

    P2O5MgOSiO2Al2O3FCaOFe2O3
    21.236.4114.081.583.0051.011.747
    K2OTiO2MnOZnOSrOZrO2Na2O
    0.4480.0960.06910.02150.07530.00310.23
    下載: 導出CSV

    表  3  原礦樣品主要礦物的質量分數

    Table  3.   Mass fraction of main minerals in raw ore samples %

    FluorapatiteDolomiteQuartzAugiteOrthoclaseKimzeyite
    60.9623.7310.950.10.30.96
    ArmstrongiteIsokiteCalciteIlliteOthers
    0.890.120.370.511.11
    下載: 導出CSV

    表  4  氟磷灰石的連體情況統計

    Table  4.   Statistics on composite particles of fluorapatite %

    The mosaic
    type
    FluorapatiteFluorapatite–
    dolomite
    Fluorapatite–
    quartz
    Fluorapatite–
    other
    Mass fraction59.5726.239.924.27
    下載: 導出CSV

    表  5  白云石連體情況

    Table  5.   Statistics of composite particles of dolomite %

    The mosaic
    type
    DolomiteDolomite–
    fluorapatite
    Dolomite–
    quartz
    Dolomite–
    other
    Mass fraction46.2043.676.094.04
    下載: 導出CSV

    表  6  石英連體情況

    Table  6.   Statistics of composite particles of quartz %

    The mosaic
    type
    QuartzQuartz–
    fluorapatite
    Quartz–
    dolomite
    Quartz–
    other
    Mass fraction41.7339.0411.188.05
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Cui R G, Zhang Y F, Guo J, et al. Development strategy of phosphate rock in China under global allocation of resources. Eng Sci, 2019, 21(1): 128

    崔榮國, 張艷飛, 郭娟, 等. 資源全球配置下的中國磷礦發展策略. 中國工程科學, 2019, 21(1):128
    [2] Zhang L, Yang H F, Feng A S, et al. Study on general situation and analysis of supply and demand of global phosphate resources. Conserv Utilization Miner Resour, 2017(5): 105

    張亮, 楊卉芃, 馮安生, 等. 全球磷礦資源開發利用現狀及市場分析. 礦產保護與利用, 2017(5):105
    [3] Liu X, Li C X, Luo H H, et al. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int J Miner Process, 2017, 165: 20 doi: 10.1016/j.minpro.2017.06.004
    [4] Yang H Y, Xiao J F, Xia Y, et al. Origin of the Ediacaran Weng’an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. J Asian Earth Sci, 2019, 182: 103931 doi: 10.1016/j.jseaes.2019.103931
    [5] Li W, Gao H, Luo Y J, et al. Status, trends and suggestions of phosphorus ore resources at home and abroad. China Min Mag, 2015, 24(6): 6 doi: 10.3969/j.issn.1004-4051.2015.06.003

    李維, 高輝, 羅英杰, 等. 國內外磷礦資源利用現狀、趨勢分析及對策建議. 中國礦業, 2015, 24(6):6 doi: 10.3969/j.issn.1004-4051.2015.06.003
    [6] Abouzeid A Z M. Physical and thermal treatment of phosphate ores——an overview. Int J Miner Process, 2008, 85(4): 59 doi: 10.1016/j.minpro.2007.09.001
    [7] Zhao F T, Li R L, Liu L F, et al. Discussion on double-reverse flotation desilication process of carbonate collophanite in Yunnan. Ind Miner Process, 2019, 48(8): 48

    趙鳳婷, 李若蘭, 劉麗芬, 等. 云南某碳酸鹽型膠磷礦雙反浮選脫硅工藝流程探討. 化工礦物與加工, 2019, 48(8):48
    [8] Zhou Z F, Chen M X, Sheng X F, et al. Double-reverse flotation test on medium and low grade collophanite from Fangmashan. Ind Miner Process, 2016, 45(5): 5

    周澤富, 陳明祥, 盛先芳, 等. 放馬山中低品位膠磷礦雙反浮選試驗研究. 化工礦物與加工, 2016, 45(5):5
    [9] Zhou M A, Dai C, Liu L F, et al. Transformation of flotation column in Kunyang phosphate flotation plant. Mod Min, 2016, 32(6): 75 doi: 10.3969/j.issn.1674-6082.2016.06.028

    周明安, 戴川, 劉麗芬, 等. 昆陽磷礦浮選廠浮選柱的改造. 現代礦業, 2016, 32(6):75 doi: 10.3969/j.issn.1674-6082.2016.06.028
    [10] Liu A, Han F, Li Z H, et al. Research progress of nano-bubble in micro-fine mineral flotation. Conserv Utilization Miner Resour, 2018(3): 81

    劉安, 韓峰, 李志紅, 等. 納米氣泡在微細粒礦物浮選中的應用研究進展. 礦產保護與利用, 2018(3):81
    [11] Hoang D H, Kupka N, Peuker U A, et al. Flotation study of fine grained carbonaceous sedimentary apatite ore-Challenges in process mineralogy and impact of hydrodynamics. Miner Eng, 2018, 121: 196 doi: 10.1016/j.mineng.2018.03.021
    [12] Gui X H, Xing Y W, Wang B, et al. Fine coal flotation process intensification: part 1-a general overview of the state-of-the-art of the related research work conducted both within and abroad. Coal Prepar Technol, 2017(1): 93

    桂夏輝, 邢耀文, 王波, 等. 煤泥浮選過程強化之一——國內外研究現狀篇. 選煤技術, 2017(1):93
    [13] Hoang D H, Hassanzadeh A, Peuker U A, et al. Impact of flotation hydrodynamics on the optimization of fine-grained carbonaceous sedimentary apatite ore beneficiation. Powder Technol, 2019, 345: 223 doi: 10.1016/j.powtec.2019.01.014
    [14] Yang W Q, Fang S X, Pang J T, et al. Determination of collophane monomer dissociation degree under different grinding fineness and its use in flotation. J Wuhan Inst Technol, 2014, 36(4): 31 doi: 10.3969/j.issn.1674-2869.2014.04.007

    楊穩權, 方世祥, 龐建濤, 等. 膠磷礦不同磨礦細度單體解離度測定及其浮選應用. 武漢工程大學學報, 2014, 36(4):31 doi: 10.3969/j.issn.1674-2869.2014.04.007
    [15] Leistner T, Embrechts M, Lei?ner T, et al. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner Eng, 2016, 96-97: 94 doi: 10.1016/j.mineng.2016.06.020
    [16] Leistner T, Peuker U A, Rudolph M. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Miner Eng, 2017, 109: 1 doi: 10.1016/j.mineng.2017.02.005
    [17] Luttrell G H, Yoon R H. A hydrodynamic model for bubble-particle attachment. J Colloid Interface Sci, 1992, 154(1): 129 doi: 10.1016/0021-9797(92)90085-Z
    [18] Gu Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser. J Miner Mater Charact Eng, 2003, 2(1): 33
    [19] Fang F Y, Wang J M. The mineralogy characteristics of overflow product from hydrocyclone in the Yunnan Phosphorite Mine. Value Eng, 2019, 38(8): 162

    方福躍, 王靜明. 云南某磷礦選礦廠旋流器溢流產品工藝礦物學研究. 價值工程, 2019, 38(8):162
    [20] Li H Q, Zhang W, Zheng H F, et al. Process mineralogy study of phosphate ore in Dayukou area. Ind Miner Process, 2019, 48(12): 43

    李洪強, 張文, 鄭惠方, 等. 大峪口膠磷礦工藝礦物學研究. 化工礦物與加工, 2019, 48(12):43
    [21] Han M. Analysis of application of technological mineralogy in mineral processing. World Nonferrous Met, 2018(13): 242 doi: 10.3969/j.issn.1002-5065.2018.13.134

    韓明. 工藝礦物學在礦物加工中的應用分析. 世界有色金屬, 2018(13):242 doi: 10.3969/j.issn.1002-5065.2018.13.134
    [22] Zhang Q, He F Y, Mao S, et al. Dissemination characteristics and grinding fineness of collophanite and dolomite. Ind Miner Process, 2010, 39(12): 8 doi: 10.3969/j.issn.1008-7524.2010.12.003

    張覃, 何發鈺, 卯松, 等. 膠磷礦和白云石的嵌布特征及磨礦細度試驗. 化工礦物與加工, 2010, 39(12):8 doi: 10.3969/j.issn.1008-7524.2010.12.003
    [23] Lei?ner T, Hoang D H, Rudolph M, et al. A mineral liberation study of grain boundary fracture based on measurements of the surface exposure after milling. Int J Miner Process, 2016, 156: 3 doi: 10.1016/j.minpro.2016.08.014
    [24] de Medeiros A R S, Baltar C A M. Importance of collector chain length in flotation of fine particles. Miner Eng, 2018, 122: 179 doi: 10.1016/j.mineng.2018.03.008
    [25] Zhang Q, Tang X F, Liu J, et al. Process mineralogy of gravity concentrate of Anshan iron mine. Met Mine, 2019(2): 183

    張琦, 唐學飛, 劉杰, 等. 鞍山式鐵礦重選精礦工藝礦物學研究. 金屬礦山, 2019(2):183
    [26] Zhao F T, Zhou Q B, Pang J T, et al. Summary of research status of desilication of collophane. Phosphate Compd Fertilizer, 2019, 34(6): 33 doi: 10.3969/j.issn.1007-6220.2019.06.011

    趙鳳婷, 周瓊波, 龐建濤, 等. 磷礦脫硅研究現狀概述. 磷肥與復肥, 2019, 34(6):33 doi: 10.3969/j.issn.1007-6220.2019.06.011
    [27] Vieira A M, Peres A E C. The effect of amine type, pH, and size range in the flotation of quartz. Miner Eng, 2007, 20(10): 1008 doi: 10.1016/j.mineng.2007.03.013
    [28] Yu Y X, Ma L Q, Zhang Z L, et al. Mechanism of entrainment and slime coating on coal flotation. J China Coal Soc, 2015, 40(3): 652

    于躍先, 馬力強, 張仲玲, 等. 煤泥浮選過程中的細泥夾帶與罩蓋機理. 煤炭學報, 2015, 40(3):652
    [29] Yao J, Xue J W, Li D, et al. Effects of fine-coarse particles interaction on flotation separation and interaction energy calculation. Part Sci Technol, 2018, 36(1): 11 doi: 10.1080/02726351.2016.1205687
    [30] Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8
    [31] Song Z X, Han J K, Wang W Z, et al. Development and application status of flotation column technology. Met Mine, 2019(6): 20

    宋子翔, 韓繼康, 王偉之, 等. 浮選柱技術發展與應用現狀. 金屬礦山, 2019(6):20
    [32] Fan M M, Tao D, Honaker R, et al. Nanobubble generation and its application in froth flotation (part II): fundamental study and theoretical analysis. Min Sci Technol (China), 2010, 20(2): 159 doi: 10.1016/S1674-5264(09)60179-4
  • 加載中
圖(11) / 表(6)
計量
  • 文章訪問數:  3422
  • HTML全文瀏覽量:  887
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-24
  • 刊出日期:  2021-04-26

目錄

    /

    返回文章
    返回