<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于改進差分進化算法的加熱爐調度方法

閆祺 李文甲 王稼晨 馬凌 趙軍

閆祺, 李文甲, 王稼晨, 馬凌, 趙軍. 基于改進差分進化算法的加熱爐調度方法[J]. 工程科學學報, 2021, 43(3): 422-432. doi: 10.13374/j.issn2095-9389.2020.02.19.004
引用本文: 閆祺, 李文甲, 王稼晨, 馬凌, 趙軍. 基于改進差分進化算法的加熱爐調度方法[J]. 工程科學學報, 2021, 43(3): 422-432. doi: 10.13374/j.issn2095-9389.2020.02.19.004
YAN Qi, LI Wen-jia, WANG Jia-chen, MA Ling, ZHAO Jun. Reheat furnace production scheduling based on the improved differential evolution algorithm[J]. Chinese Journal of Engineering, 2021, 43(3): 422-432. doi: 10.13374/j.issn2095-9389.2020.02.19.004
Citation: YAN Qi, LI Wen-jia, WANG Jia-chen, MA Ling, ZHAO Jun. Reheat furnace production scheduling based on the improved differential evolution algorithm[J]. Chinese Journal of Engineering, 2021, 43(3): 422-432. doi: 10.13374/j.issn2095-9389.2020.02.19.004

基于改進差分進化算法的加熱爐調度方法

doi: 10.13374/j.issn2095-9389.2020.02.19.004
基金項目: 國家重點研發計劃資助項目(2018YFB0605901)
詳細信息
    通訊作者:

    E-mail:zhaojun@tju.edu.cn

  • 中圖分類號: TF087

Reheat furnace production scheduling based on the improved differential evolution algorithm

More Information
  • 摘要: 提出一種以燃料消耗量最小為優化目標的加熱爐生產調度新方法。首先基于熱力學第一定律分析了流入及流出加熱爐的各項能量,并對燃料消耗量的計算式進行了理論推導。進而根據加熱爐區實際生產調度特點歸納各約束條件,以多臺加熱爐總燃料消耗量最小為優化目標,構建調度優化數學模型。采用自適應差分進化算法搭配禁忌搜索算法進行綜合求解,并通過9組實際鋼坯生產案例模擬驗證了該算法的可行性和有效性。同時,為了探究加熱爐燃料消耗量的影響因素,提出了分別衡量加熱爐區緩沖等待、爐內加熱兩部分時間同理想生產時間匹配程度的評價參數μ1μ2,并分析了燃料消耗量對二者的敏感性,結果表明:當連鑄坯到達加熱爐節奏與熱軋工序出坯節奏之比由0.5增至2時,燃料消耗量對兩評價參數的敏感性逐漸減弱。

     

  • 圖  1  加熱爐生產流程

    Figure  1.  Reheat furnace production process

    圖  2  加熱爐區鋼坯調度甘特圖[3]

    Figure  2.  Billet scheduling Gantt chart in reheat furnace area[3]

    圖  3  加熱爐能量流模型

    Figure  3.  Energy flow model of reheat furnace

    圖  4  差分進化算法框架

    Figure  4.  Differential evolutionary algorithm framework

    圖  5  ζ=0.5時不同懲罰因子組合下燃料消耗量變化。(a)三維圖;(b)C1C2平面投影圖

    Figure  5.  Fuel consumption under the different punishment factor combinations when ζ = 0.5: (a) three-dimensional figure; (b) C1 and C2 plane projection

    圖  7  ζ=2時不同懲罰因子組合下燃料消耗量變化。(a)三維圖;(b)C1C2平面投影圖

    Figure  7.  Fuel consumption under the different punishment factor combinations when ζ = 2: (a) three-dimensional figure; (b) C1 and C2 plane projection

    圖  6  ζ=1時不同懲罰因子組合下燃料消耗量變化。(a)三維圖;(b)C1C2平面投影圖

    Figure  6.  Fuel consumption under the different punishment factor combinations when ζ = 1: (a) three-dimensional figure; (b) C1 and C2 plane projection

    圖  8  燃料消耗量隨μ1 (a)和μ2 (b)變化關系

    Figure  8.  Relationship between fuel consumption and μ1 (a) and μ2 (b)

    表  1  本文算法與其他算法燃耗對比結果

    Table  1.   Fuel consumption comparison between the proposed algorithm and other algorithms

    TestBillet numberDE/rand/1 fuel consumption/(104 m3)DE/best/1 fuel consumption/(104 m3)DE/current-to-best/1 fuel consumption/(104 m3)Proposed algorithm fuel consumption/(104 m3)
    Test 1823.45653.45993.48723.2736
    Test 2904.18494.21244.16673.8481
    Test 3985.03694.9184.94264.7187
    Test 41075.86065.78855.81025.1345
    Test 51186.12295.91446.01775.8095
    Test 6835.64685.65645.69755.0639
    Test 7947.10357.04697.03916.9521
    Test 81068.31898.17088.23647.8882
    Test 912010.243810.380710.469610.1119
    下載: 導出CSV

    表  2  本文目標與其他調度目標燃耗對比結果

    Table  2.   Fuel consumption comparison between the proposed objective and other objectives

    TestBillet numberFuel consumption/(104 m3)
    Proposed objectiveObjective 1Objective 2Objective 3
    Test 1823.23745.06644.39644.1741
    Test 2903.80584.95675.364.3039
    Test 3984.62165.37265.43194.9666
    Test 41075.07626.23966.01145.2608
    Test 51185.74527.52457.04765.9771
    Test 6835.00787.27397.21765.6939
    Test 7946.87588.67388.79917.8711
    Test 81067.75639.09668.09228.3118
    Test 91209.972610.84310.87410.53
    Average1005.78877.22757.02566.3425
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ma S H, Wen Z G, Chen J N, et al. Mode of circular economy in China’s iron and steel industry: a case study in Wu’an city. J Clean Prod, 2014, 64: 505 doi: 10.1016/j.jclepro.2013.10.008
    [2] Lu B, Chen G, Chen D M, et al. An energy intensity optimization model for production system in iron and steel industry. Appl Therm Eng, 2016, 100: 285 doi: 10.1016/j.applthermaleng.2016.01.064
    [3] Tang L X, Ren H Z, Yang Y. Reheat furnace scheduling with energy consideration. Int J Prod Res, 2015, 53(6): 1642 doi: 10.1080/00207543.2014.919418
    [4] Yang Y J, Jiang Z Y, Zhang X X. Model and algorithm of furnace area production scheduling in slab hot rolling. J Univ Sci Technol Beijing, 2012, 34(7): 841

    楊業建, 姜澤毅, 張欣欣. 鋼坯熱軋加熱爐區生產調度模型與算法. 北京科技大學學報, 2012, 34(7):841
    [5] Tu N W, Luo X C, Chai T Y. Scheduling of walking beam reheating furnaces based on ant colony optimization algorithm. J Northeast Univ Nat Sci, 2011, 32(1): 1

    屠乃威, 羅小川, 柴天佑. 基于蟻群優化算法的步進式加熱爐調度. 東北大學學報: 自然科學版, 2011, 32(1):1
    [6] Li T K, Wang B L, Zhao Y Y. Three-stage algorithm for the scheduling problem of parallel reheating furnaces. J Syst Eng, 2011, 26(1): 105

    李鐵克, 王柏琳, 趙艷艷. 求解并行加熱爐群調度問題的三階段算法. 系統工程學報, 2011, 26(1):105
    [7] Ilmer Q, Haeussler S, Missbauer H. Optimal synchronization of the hot rolling stage in steel production. IFAC-PapersOnLine, 2019, 52(13): 1615 doi: 10.1016/j.ifacol.2019.11.431
    [8] Chen D M, Lu B, Zhang X H, et al. Fluctuation characteristic of billet region gas consumption in reheating furnace based on energy apportionment model. Appl Therm Eng, 2018, 136: 152 doi: 10.1016/j.applthermaleng.2018.03.007
    [9] Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking?continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144

    劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144
    [10] Zhu G J, Zeng H, Ruan K J, et al. Basis of Metallurgical Thermal Engineering. Beijing: Metallurgical Industry Press, 2007

    朱光俊, 曾紅, 阮開軍, 等. 冶金熱工基礎. 北京: 冶金工業出版社, 2007
    [11] Chen D M, Lu B, Dai F Q, et al. Bottleneck of slab thermal efficiency in reheating furnace based on energy apportionment model. Energy, 2018, 150: 1058 doi: 10.1016/j.energy.2018.02.149
    [12] Yu Z X. Hot Transfer and Hot Charging Technology of Continuous Casting Billet. Beijing: Metallurgical Industry Press, 2002

    余志祥. 連鑄坯熱送熱裝技術. 北京: 冶金工業出版社, 2002
    [13] Cai Y H. Design and Application on Optimization of Energy-Saving in Steel Rolling Heating Process[Dissertation]. Harbin: Harbin Institute of Technology, 2016

    柴艷紅. 鋼鐵連軋加熱工序的節能優化方案設計與應用[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016
    [14] Yin R Y. Metallurgical Process Engineering. 2nd Ed. Beijing: Metallurgical Industry Press, 2009

    殷瑞鈺. 冶金流程工程學. 2版. 北京: 冶金工業出版社, 2009
    [15] Xia Q. Operation and Scheduling of Reheating Furnace Production Process based on Differential Evolution Algorithm[Dissertation]. Shenyang: Northeastern University, 2010

    夏瓊. 基于差分進化算法的加熱爐生產過程操作調度[學位論文]. 沈陽: 東北大學, 2010
    [16] Bilal, Pant M, Zaheer H, et al. Differential evolution: A review of more than two decades of research. Eng Appl Artif Intell, 2020, 90: 103479 doi: 10.1016/j.engappai.2020.103479
    [17] Marcic T, Stumberger B, Stumberger G. Differential-evolution-based parameter identification of a line-start IPM synchronous motor. IEEE Trans Ind Electron, 2014, 61(11): 5921 doi: 10.1109/TIE.2014.2308160
    [18] Kadhar K M A, Baskar S, Amali S M J. Diversity controlled self adaptive differential evolution based design of non-fragile multivariable PI controller. Eng Appl Artif Intell, 2015, 46: 209 doi: 10.1016/j.engappai.2015.09.015
    [19] Sakr W S, El-Sehiemy R A, Azmy A M. Adaptive differential evolution algorithm for efficient reactive power management. Appl Soft Comput, 2017, 53: 336 doi: 10.1016/j.asoc.2017.01.004
    [20] Wu G H, Mallipeddi R, Suganthan P N, et al. Differential evolution with multi-population based ensemble of mutation strategies. Inform Sci, 2016, 329: 329 doi: 10.1016/j.ins.2015.09.009
    [21] Zhou X G, Zhang G J, Hao X H, et al. Differential evolution with multi-stage strategies for global optimization//2016 IEEE Congress on Evolutionary Computation. Vancouver, 2016: 2550
    [22] Guo Q X, Tang L X. Modelling and discrete differential evolution algorithm for order rescheduling problem in steel industry. Comput Ind Eng, 2019, 130: 586 doi: 10.1016/j.cie.2019.03.011
    [23] Dong Y, Zhao R. Solve train stowage planning problem of steel coil using a pointer-based discrete differential evolution. Int J Prod Res, 2018, 56(22): 6937 doi: 10.1080/00207543.2017.1413260
    [24] Xia Q, Wang X P, Tang L X. Furnace operation optimization with hybrid model based on mechanism and data analytics. Soft Comput, 2019, 23: 9551 doi: 10.1007/s00500-018-3519-9
    [25] Ghosh A, Das S, Chowdhury A, et al. An improved differential evolution algorithm with fitness-based adaptation of the control parameters. Inform Sci, 2011, 181(18): 3749 doi: 10.1016/j.ins.2011.03.010
    [26] Al-Dabbagh R D, Neri F, Idris N, et al. Algorithmic design issues in adaptive differential evolution schemes: review and taxonomy. Swarm Evol Comput, 2018, 43: 284 doi: 10.1016/j.swevo.2018.03.008
    [27] Das S, Mullick S S, Suganthan P N. Recent advances in differential evolution–an updated survey. Swarm Evol Comput, 2016, 27: 1 doi: 10.1016/j.swevo.2016.01.004
    [28] Tang L X, Zhao Y, Liu J Y. An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans Evol Comput, 2014, 18(2): 209 doi: 10.1109/TEVC.2013.2250977
    [29] Ning S S, Wang W, Liu Q L. An optimal scheduling algorithm for reheating furnace in steel production. Control Decis, 2006, 21(10): 1138 doi: 10.3321/j.issn:1001-0920.2006.10.012

    寧樹實, 王偉, 劉全利. 鋼鐵生產中的加熱爐優化調度算法研究. 控制與決策, 2006, 21(10):1138 doi: 10.3321/j.issn:1001-0920.2006.10.012
    [30] Tan Y Y, Song J H, Liu S X. Model and algorithm for scheduling reheating furnace. Control Theory Appl, 2011, 28(11): 1549

    譚園園, 宋健海, 劉士新. 加熱爐優化調度模型及算法研究. 控制理論與應用, 2011, 28(11):1549
    [31] Liu J, Liu Q, Wang B, et al. Research on configuration and scheduling optimization for heating furnace process. China Metall, 2014, 24(11): 53

    劉健, 劉青, 王彬, 等. 加熱爐工序的配置與調度優化研究. 中國冶金, 2014, 24(11):53
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  1649
  • HTML全文瀏覽量:  932
  • PDF下載量:  82
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-19
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回