<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

納米錳方硼石的合成與結構性能表征

曹詩瑤 武秋池 閆小琴 紀箴 曹林

曹詩瑤, 武秋池, 閆小琴, 紀箴, 曹林. 納米錳方硼石的合成與結構性能表征[J]. 工程科學學報, 2020, 42(7): 869-874. doi: 10.13374/j.issn2095-9389.2020.02.19.001
引用本文: 曹詩瑤, 武秋池, 閆小琴, 紀箴, 曹林. 納米錳方硼石的合成與結構性能表征[J]. 工程科學學報, 2020, 42(7): 869-874. doi: 10.13374/j.issn2095-9389.2020.02.19.001
CAO Shi-yao, WU Qiu-chi, YAN Xiao-qin, JI Zhen, CAO Lin. Synthesis and characterization of nano-chambersite[J]. Chinese Journal of Engineering, 2020, 42(7): 869-874. doi: 10.13374/j.issn2095-9389.2020.02.19.001
Citation: CAO Shi-yao, WU Qiu-chi, YAN Xiao-qin, JI Zhen, CAO Lin. Synthesis and characterization of nano-chambersite[J]. Chinese Journal of Engineering, 2020, 42(7): 869-874. doi: 10.13374/j.issn2095-9389.2020.02.19.001

納米錳方硼石的合成與結構性能表征

doi: 10.13374/j.issn2095-9389.2020.02.19.001
基金項目: 天津薊縣錳方硼石利用研究之錳方硼石材料科學研究(08300140)
詳細信息
    作者簡介:

    閆小琴:E-mail:xqyan@mater.ustb.edu.cn

    通訊作者:

    E-mail:jizhen@mater.ustb.edu.cn

  • 中圖分類號: TB303

Synthesis and characterization of nano-chambersite

More Information
  • 摘要: 通過溶膠?凝膠(Sol?Gel)法成功合成了納米錳方硼石并對其進行了稀土Eu3+摻雜。使用X射線衍射、透射電子顯微鏡和高分辨透射電子顯微鏡等表征了錳方硼石晶體結構,并通過熒光光譜測試對其發光性能進行了研究。結果表明:合成納米錳方硼石為粒徑小于50 nm的球狀顆粒,與天然錳方硼石的物相結構相同,屬于斜方晶系,與尖晶石類似,(010)晶面的晶面間距為0.8565 nm。在490 nm激發光激發下,天然錳方硼石、合成錳方硼石和稀土Eu3+摻雜錳方硼石晶體中的Mn2+發光,其中發綠光的Mn2+在晶體中占據四面體格位中心,發紅光的Mn2+在晶體占據八面體格位中心。合成的錳方硼石隨激發波長變長,產生發射光譜的紅移現象,有利于實現冷暖發光轉換;在稀土Eu3+摻雜的納米錳方硼石光譜的發光強度得到了提升。

     

  • 圖  1  合成納米錳方硼石(Mn3B7O13Cl)、稀土Eu3+摻雜納米錳方硼石(Mn3B7O13Cl:Eu3+)及天然錳方硼石的XRD譜圖

    Figure  1.  XRD spectrum of artificial synthesized chambersite (Mn3B7O13Cl), Eu3+ doped chambersite (Mn3B7O13Cl:Eu3+) and natural chambersite

    圖  2  錳方硼石晶胞結構

    Figure  2.  Crystal structure of Mn3B7O13Cl

    圖  3  合成納米錳方硼石樣品TEM形貌照片

    Figure  3.  TEM image of artificial synthesized Mn3B7O13Cl

    圖  4  合成納米錳方硼石透射表征圖.(a)合成納米錳方硼石HRTEM;(b)反傅里葉變換后計算像

    Figure  4.  TEM characterization of artificial synthesized Mn3B7O13Cl: (a) HRTEM image of artificial synthesized Mn3B7O13Cl; (b) calculated image after inverse Fourier transform

    圖  5  錳方硼石熒光發光性能測試。(a)合成錳方硼石中Mn2+在不同激發波長下的發射光譜,縮小圖為500~550 nm波長范圍內局部放大圖;(b)在激發波長為490 nm下天然錳方硼石、合成錳方硼石及Eu3+摻雜錳方硼石的發射光譜

    Figure  5.  Fluorescence performance of Mn3B7O13Cl: (a) emission spectra of Mn2+ in artificial synthesized Mn3B7O13Cl under different excitation wavelengths, and the reduced image is a partial enlarged image in the wavelength range of 500–550 nm; (b) emission spectra of natural Mn3B7O13Cl, artificial synthesized Mn3B7O13Cl, and Mn3B7O13Cl:Eu3+ under an excitation wavelength of 490 nm

    表  1  晶胞參數對比表

    Table  1.   Comparison of unit cell parameters

    Specimen typea/nmb/nmc/nmGrain size/nm
    PDF standard card0.867830.868851.22963
    Artificial synthesized0.86930.86871.227974.3
    Eu3+ doped0.86800.86861.228573.1
    下載: 導出CSV

    表  2  峰值統計表

    Table  2.   Comparison of peak intensity

    Specimen typeλgreen /nmIgreenλred/nmIredIred/Igreen
    Natural Mn3B7O13Cl552.4182173919171.053
    Artificially synthesized Mn3B7O13Cl552.0105973913511.276
    Eu3+doped Mn3B7O13Cl552.2145873916941.162
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Вeлов В Ф, Mao J M. Study on the chambersite Mn3B7O13Cl with nucleon γ ray resonance absorption. Geol Geochem, 1980(9): 72

    別洛夫В Ф, 毛俊明. 用原子核γ射線共振吸收法研究鐵電體方硼石族Mn3B7O13Cl. 地質地球化學, 1980(9):72
    [2] Zen Y S. Synthesis of chambersite and its geochemical implication. Acta Geologica Sinica, 1983(4): 401

    曾貽善. 錳方硼石的合成及其地球化學意義. 地質學報, 1983(4):401
    [3] Bai H N, Ji Z, Cao L, et al. Research progress on structure and properties of chambersite. Powder Metall Technol, 2018, 36(1): 73

    柏慧凝, 紀箴, 曹林, 等. 錳方硼石結構與性能的研究進展. 粉末冶金技術, 2018, 36(1):73
    [4] Zhang R, Xu H, Li M M. Vibrational spectroscopy characteristics of rare mineral chambersite in jixian of Tianjin, China. Rock Mineral Anal, 2018, 37(2): 139

    張然, 許虹, 李梅梅. 稀有礦物天津薊縣錳方硼石振動光譜特征研究. 巖礦測試, 2018, 37(2):139
    [5] Ci Z P, Zhu G, Que M D, et al. Photoluminescence properties of Sr10(PO4)5.5(BO4)0.5BO2: Re3+ (Re=Eu, Dy Sm) phosphors for white light-emitting diodes. J Aust Ceram Soc, 2013, 49(1): 58
    [6] Liang D, Cao L, Jia C C. Preparation and electromagnetic properties of Chambersite nano-powders. Powder Metall Technol, 2015, 33(2): 111 doi: 10.3969/j.issn.1001-3784.2015.02.006

    梁棟, 曹林, 賈成廠. 納米錳方硼石的制備及其電磁特性. 粉末冶金技術, 2015, 33(2):111 doi: 10.3969/j.issn.1001-3784.2015.02.006
    [7] Wu H P, Pan S L, Poeppelmeier K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc, 2011, 133(20): 7786 doi: 10.1021/ja111083x
    [8] Bums P C, Grice J D, Hawthorne F C. Borate minerals; I, Polyhedral clusters and fundamental building blocks. Can Mineralogist, 1995, 33(5): 1131
    [9] Bachmann V, Ronda C, Oeckler O, et al. Color point tuning for (Sr, Ca, Ba) Si2O2N2: Eu2+ for white light LEDs. Chem Mater, 2009, 21(2): 316 doi: 10.1021/cm802394w
    [10] Takahashi K, Hirosaki N, Xie R J, et al. Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz)(z~1) oxynitride phosphors and their application in white light-emitting diode. Appl Phys Lett, 2007, 91(9): 091923 doi: 10.1063/1.2779093
    [11] He H, Fu R L, Zhang X L, et al. Photoluminescence spectra tuning of Eu2+ activated orthosilicate phosphors used for white light emitting diodes. J Mater Sci Mater Electron, 2009, 20(5): 433 doi: 10.1007/s10854-008-9747-5
    [12] Kottaisamy M, Thiyagarajan P, Mishra J, et al. Color tuning of Y3Al5O12: Ce phosphor and their blend for white LEDs. Mater Res Bull, 2008, 43(7): 1657 doi: 10.1016/j.materresbull.2007.09.005
    [13] Jang H S, Won Y H, Vaidyanathan S, et al. Emission band change of (Sr1-xMx)3SiO5: Eu2+ (M=Ca, Ba) phosphor for white light sources using blue/near-ultraviolet LEDs. J Electrochem Soc, 2009, 156(6): J138 doi: 10.1149/1.3106042
    [14] Sakuma K, Hirosaki N, Xie R J. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-SiAlON ceramic phosphors. J Luminescence, 2007, 126(2): 843 doi: 10.1016/j.jlumin.2006.12.006
    [15] Matsuyama I, Yamashita N, Nakamura K. Photoluminescence of the SrS: Mn2+ phosphor and Pb2+-sensitized luminescence of the SrS: Pb2+, Mn2+ phosphor. J Phys Soc Jpn, 1989, 58(2): 741 doi: 10.1143/JPSJ.58.741
    [16] Vink A P, de Bruin M A, Roke S, et al. Luminescence of exchange coupled pairs of transition metal ions. J Electrochem Soc, 2001, 148(7): E313 doi: 10.1149/1.1375169
    [17] Yamashita N, Maekawa S, Nakamura K. Influence of paired Mn2+ centers on the luminescence spectra of CaS: Mn2+. Jpn J Appl Phys, 1990, 29(9): 1729
    [18] Barthou C, Benoit J, Benalloul P, et al. Mn2+ concentration effect on the optical properties of Zn2SiO4: Mn phosphors. J Electrochem Soc, 1994, 141(2): 524 doi: 10.1149/1.2054759
    [19] Ronda C R, Amrein T. Evidence for exchange-induced luminescence in Zn2SiO4: Mn. J Luminescence, 1996, 69(5-6): 245 doi: 10.1016/S0022-2313(96)00103-2
    [20] Kamran M A, Zhang Y Y, Liu R B, et al. A model on the Mn2+ luminescence band red shift with Mn(Ⅱ) doping and aggregation within CdS: Mn microwires. Chin Phys Lett, 2014, 31(6): 067802 doi: 10.1088/0256-307X/31/6/067802
    [21] Zhang X W, Hu Q, Lin J Y, et al. Efficient and stable deep blue polymer light-emitting devices based on β-phase poly(9,9-dioctylfluorene). Appl Phys Lett, 2013, 103(15): 153301 doi: 10.1063/1.4824766
    [22] Lojpur V, Nikoli? M G, Jovanovi? D, et al. Luminescence thermometry with Zn2SiO4: Mn2+ powder. Appl Phys Lett, 2013, 103(14): 141912 doi: 10.1063/1.4824208
    [23] Gao W R, Wang X M, Xu W Q, et al. Luminescent composite polymer fibers: In situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Mater Sci Eng C, 2014, 42: 333 doi: 10.1016/j.msec.2014.05.020
    [24] Yuan J P, Guo W W, Wang E K. Oligonucleotide stabilized silver nanoclusters as fluorescence probe for drug–DNA interaction investigation. Anal Chim Acta, 2011, 706(2): 338 doi: 10.1016/j.aca.2011.08.043
    [25] Tian Y, Cao Y Y, Pang F, et al. Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Adv, 2014, 4(81): 43204 doi: 10.1039/C4RA06089J
    [26] Guo W W, Yuan J P, Wang E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun, 2009(23): 3395 doi: 10.1039/b821518a
    [27] Dhanya S, Saumya V, Rao T P. Synthesis of silver nanoclusters, characterization and application to trace level sensing of nitrate in aqueous media. Electrochim Acta, 2013, 102: 299 doi: 10.1016/j.electacta.2013.04.017
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數:  1881
  • HTML全文瀏覽量:  1083
  • PDF下載量:  40
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-19
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回