-
摘要: 通過溶膠?凝膠(Sol?Gel)法成功合成了納米錳方硼石并對其進行了稀土Eu3+摻雜。使用X射線衍射、透射電子顯微鏡和高分辨透射電子顯微鏡等表征了錳方硼石晶體結構,并通過熒光光譜測試對其發光性能進行了研究。結果表明:合成納米錳方硼石為粒徑小于50 nm的球狀顆粒,與天然錳方硼石的物相結構相同,屬于斜方晶系,與尖晶石類似,(010)晶面的晶面間距為0.8565 nm。在490 nm激發光激發下,天然錳方硼石、合成錳方硼石和稀土Eu3+摻雜錳方硼石晶體中的Mn2+發光,其中發綠光的Mn2+在晶體中占據四面體格位中心,發紅光的Mn2+在晶體占據八面體格位中心。合成的錳方硼石隨激發波長變長,產生發射光譜的紅移現象,有利于實現冷暖發光轉換;在稀土Eu3+摻雜的納米錳方硼石光譜的發光強度得到了提升。Abstract: Chambersite (Mn3B7O13Cl) is both a rare inorganic macromolecular manganese chloroborate and a rare mineral. The chambersite deposit was firstly discovered in Jixian, Tianjin, China, which is the only mineable chambersite deposit in the world. Due to its unique multi-element composition and structure type, it has great application potential as a light-emitting material in biological anti-virus, anti-tumor, and anti-microbial applications, as well as a nuclear-protection and LED applications. However, as yet there are few reports on the material science of chambersite. Rare-earth and transition-group ion-activated borate are important constituent systems in luminescent materials. In this paper, nano-chambersite and rare-earth-element Eu3+-doped nano-chambersite were successfully synthesized by Sol-Gel method. The crystal structure of the nano-chambersite was characterized by X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy. The performance comparison between natural chambersite and synthetic chambersite was provided to provide a basis for the rational development and utilization of chambersite. The results show that the artificially synthesized chambersite has a spherical shape with a particle size of less than 50 nm, and has the same phase structure as natural chambersite. It belongs to the orthorhombic system and has a structure similar to that of spinel. The inter planar spacing of (010) is 0.8565 nm. Under 490 nm excitation light, the natural chambersite, artificially synthesized chambersite, and rare-earth-element Eu3+-doped chambersite crystal all showed a Mn2+ emitting center. The Mn2+ that filled the center of the tetrahedral lattice site of the crystal exhibited a green emission, whereas the Mn2+ that filled the center of the octahedral lattice site of the crystal exhibited a red emission. The artificially synthesized chambersite showed a unique red shift of the emission spectrum with increases in the emitting-light wavelength. This unique phenomenon is beneficial to the conversion of cold and warm luminescence. Eu3+ doping in the artificially synthesized chamversite further increased the intensity of the luminescence.
-
圖 5 錳方硼石熒光發光性能測試。(a)合成錳方硼石中Mn2+在不同激發波長下的發射光譜,縮小圖為500~550 nm波長范圍內局部放大圖;(b)在激發波長為490 nm下天然錳方硼石、合成錳方硼石及Eu3+摻雜錳方硼石的發射光譜
Figure 5. Fluorescence performance of Mn3B7O13Cl: (a) emission spectra of Mn2+ in artificial synthesized Mn3B7O13Cl under different excitation wavelengths, and the reduced image is a partial enlarged image in the wavelength range of 500–550 nm; (b) emission spectra of natural Mn3B7O13Cl, artificial synthesized Mn3B7O13Cl, and Mn3B7O13Cl:Eu3+ under an excitation wavelength of 490 nm
表 1 晶胞參數對比表
Table 1. Comparison of unit cell parameters
Specimen type a/nm b/nm c/nm Grain size/nm PDF standard card 0.86783 0.86885 1.22963 Artificial synthesized 0.8693 0.8687 1.2279 74.3 Eu3+ doped 0.8680 0.8686 1.2285 73.1 表 2 峰值統計表
Table 2. Comparison of peak intensity
Specimen type λgreen /nm Igreen λred/nm Ired Ired/Igreen Natural Mn3B7O13Cl 552.4 1821 739 1917 1.053 Artificially synthesized Mn3B7O13Cl 552.0 1059 739 1351 1.276 Eu3+doped Mn3B7O13Cl 552.2 1458 739 1694 1.162 259luxu-164 -
參考文獻
[1] Вeлов В Ф, Mao J M. Study on the chambersite Mn3B7O13Cl with nucleon γ ray resonance absorption. Geol Geochem, 1980(9): 72別洛夫В Ф, 毛俊明. 用原子核γ射線共振吸收法研究鐵電體方硼石族Mn3B7O13Cl. 地質地球化學, 1980(9):72 [2] Zen Y S. Synthesis of chambersite and its geochemical implication. Acta Geologica Sinica, 1983(4): 401曾貽善. 錳方硼石的合成及其地球化學意義. 地質學報, 1983(4):401 [3] Bai H N, Ji Z, Cao L, et al. Research progress on structure and properties of chambersite. Powder Metall Technol, 2018, 36(1): 73柏慧凝, 紀箴, 曹林, 等. 錳方硼石結構與性能的研究進展. 粉末冶金技術, 2018, 36(1):73 [4] Zhang R, Xu H, Li M M. Vibrational spectroscopy characteristics of rare mineral chambersite in jixian of Tianjin, China. Rock Mineral Anal, 2018, 37(2): 139張然, 許虹, 李梅梅. 稀有礦物天津薊縣錳方硼石振動光譜特征研究. 巖礦測試, 2018, 37(2):139 [5] Ci Z P, Zhu G, Que M D, et al. Photoluminescence properties of Sr10(PO4)5.5(BO4)0.5BO2: Re3+ (Re=Eu, Dy Sm) phosphors for white light-emitting diodes. J Aust Ceram Soc, 2013, 49(1): 58 [6] Liang D, Cao L, Jia C C. Preparation and electromagnetic properties of Chambersite nano-powders. Powder Metall Technol, 2015, 33(2): 111 doi: 10.3969/j.issn.1001-3784.2015.02.006梁棟, 曹林, 賈成廠. 納米錳方硼石的制備及其電磁特性. 粉末冶金技術, 2015, 33(2):111 doi: 10.3969/j.issn.1001-3784.2015.02.006 [7] Wu H P, Pan S L, Poeppelmeier K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc, 2011, 133(20): 7786 doi: 10.1021/ja111083x [8] Bums P C, Grice J D, Hawthorne F C. Borate minerals; I, Polyhedral clusters and fundamental building blocks. Can Mineralogist, 1995, 33(5): 1131 [9] Bachmann V, Ronda C, Oeckler O, et al. Color point tuning for (Sr, Ca, Ba) Si2O2N2: Eu2+ for white light LEDs. Chem Mater, 2009, 21(2): 316 doi: 10.1021/cm802394w [10] Takahashi K, Hirosaki N, Xie R J, et al. Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz)(z~1) oxynitride phosphors and their application in white light-emitting diode. Appl Phys Lett, 2007, 91(9): 091923 doi: 10.1063/1.2779093 [11] He H, Fu R L, Zhang X L, et al. Photoluminescence spectra tuning of Eu2+ activated orthosilicate phosphors used for white light emitting diodes. J Mater Sci Mater Electron, 2009, 20(5): 433 doi: 10.1007/s10854-008-9747-5 [12] Kottaisamy M, Thiyagarajan P, Mishra J, et al. Color tuning of Y3Al5O12: Ce phosphor and their blend for white LEDs. Mater Res Bull, 2008, 43(7): 1657 doi: 10.1016/j.materresbull.2007.09.005 [13] Jang H S, Won Y H, Vaidyanathan S, et al. Emission band change of (Sr1-xMx)3SiO5: Eu2+ (M=Ca, Ba) phosphor for white light sources using blue/near-ultraviolet LEDs. J Electrochem Soc, 2009, 156(6): J138 doi: 10.1149/1.3106042 [14] Sakuma K, Hirosaki N, Xie R J. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-SiAlON ceramic phosphors. J Luminescence, 2007, 126(2): 843 doi: 10.1016/j.jlumin.2006.12.006 [15] Matsuyama I, Yamashita N, Nakamura K. Photoluminescence of the SrS: Mn2+ phosphor and Pb2+-sensitized luminescence of the SrS: Pb2+, Mn2+ phosphor. J Phys Soc Jpn, 1989, 58(2): 741 doi: 10.1143/JPSJ.58.741 [16] Vink A P, de Bruin M A, Roke S, et al. Luminescence of exchange coupled pairs of transition metal ions. J Electrochem Soc, 2001, 148(7): E313 doi: 10.1149/1.1375169 [17] Yamashita N, Maekawa S, Nakamura K. Influence of paired Mn2+ centers on the luminescence spectra of CaS: Mn2+. Jpn J Appl Phys, 1990, 29(9): 1729 [18] Barthou C, Benoit J, Benalloul P, et al. Mn2+ concentration effect on the optical properties of Zn2SiO4: Mn phosphors. J Electrochem Soc, 1994, 141(2): 524 doi: 10.1149/1.2054759 [19] Ronda C R, Amrein T. Evidence for exchange-induced luminescence in Zn2SiO4: Mn. J Luminescence, 1996, 69(5-6): 245 doi: 10.1016/S0022-2313(96)00103-2 [20] Kamran M A, Zhang Y Y, Liu R B, et al. A model on the Mn2+ luminescence band red shift with Mn(Ⅱ) doping and aggregation within CdS: Mn microwires. Chin Phys Lett, 2014, 31(6): 067802 doi: 10.1088/0256-307X/31/6/067802 [21] Zhang X W, Hu Q, Lin J Y, et al. Efficient and stable deep blue polymer light-emitting devices based on β-phase poly(9,9-dioctylfluorene). Appl Phys Lett, 2013, 103(15): 153301 doi: 10.1063/1.4824766 [22] Lojpur V, Nikoli? M G, Jovanovi? D, et al. Luminescence thermometry with Zn2SiO4: Mn2+ powder. Appl Phys Lett, 2013, 103(14): 141912 doi: 10.1063/1.4824208 [23] Gao W R, Wang X M, Xu W Q, et al. Luminescent composite polymer fibers: In situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Mater Sci Eng C, 2014, 42: 333 doi: 10.1016/j.msec.2014.05.020 [24] Yuan J P, Guo W W, Wang E K. Oligonucleotide stabilized silver nanoclusters as fluorescence probe for drug–DNA interaction investigation. Anal Chim Acta, 2011, 706(2): 338 doi: 10.1016/j.aca.2011.08.043 [25] Tian Y, Cao Y Y, Pang F, et al. Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Adv, 2014, 4(81): 43204 doi: 10.1039/C4RA06089J [26] Guo W W, Yuan J P, Wang E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun, 2009(23): 3395 doi: 10.1039/b821518a [27] Dhanya S, Saumya V, Rao T P. Synthesis of silver nanoclusters, characterization and application to trace level sensing of nitrate in aqueous media. Electrochim Acta, 2013, 102: 299 doi: 10.1016/j.electacta.2013.04.017 -