-
摘要: 借鑒水泥凈漿流動度測試方法,引入擴散度參數判別尾砂膏體的流變特性,開展試驗研究分析擴散度與尾砂膏體質量分數(Cw)、灰砂比、屈服應力和黏度系數的關系,根據5個礦山的擴散度和流變參數測試結果,構建擴散度與屈服應力的經驗模型,并與推導的解析模型作對比。結果表明:尾砂膏體的擴散度主要與質量分數有關,灰砂比對其影響不顯著,隨質量分數、屈服應力和黏度的增加而減小,質量分數為68%、70%和72%的尾砂膏體的擴散度分別為20.37、17.22和12.44 cm;尾砂膏體的擴散度與屈服應力的變化趨勢相吻合,二者呈指數型函數關系,經驗模型計算得到的屈服應力與測試結果誤差在25%范圍內,且尾砂膏體質量分數越大,二者的誤差越小,達到10%以內;解析模型與經驗模型計算所得的屈服應力在擴散度為12~16 cm之間結果較接近,解析模型計算結果整體上高于測試值;相比于坍落度,擴散度測試簡便易操作,擴散度能有效表征尾砂膏體的流變特性,指導礦山現場充填。Abstract: Paste backfill is similar to surface paste disposition. Paste backfill technology is an innovative method of treating tailings, which is carried out beneath the earth. This process is widely used worldwide in many metal mining industries due to its advantages in safety, environmental protection, and high economic benefit. The rheological properties of paste backfill are essential factors in pipeline design. After analyzing paste backfilling practices for a long time, it is concluded that the slump determined according to concrete standards is not suitable for paste backfill of tailings. To increase the efficiency of the process, a spread parameter was introduced in the cement slurry flow test method to investigate the rheological properties of the paste backfill. Experiments were conducted to analyze the relationship between spread and other factors such as mass fraction (Cw) of paste backfill, cement-tailings ratio, yield stress, and viscosity. Based on the test results of spread and rheological parameters of paste backfill of tailings in five mines, the empirical model representing spread and yield stress of paste backfill of tailings was constructed and compared with the deduced analytical model. The results show that the spread of paste backfill is mainly related to mass fraction, and the effect of cement-tailings ratio on it is small. The spread of paste backfill decreases with the increase in mass fraction, yield stress, and viscosity. The spread of paste backfill of tailings with mass fraction of 68%, 70% and 72% are 20.37, 17.22 and 12.44 cm, respectively. Spread of paste backfill has an exponential relationship with its yield stress. The error between the yield stress calculated using empirical model and the actual test is within 25%, and decreases with the increase in mass fraction of paste backfill, which will be within 10%. The yield stress calculated using analytical model and empirical model are more or less the same when the spread of paste backfill of tailings is between 12 cm and 16 cm. The calculated yield stresses of analytical model are generally higher than actual test values. Compared with the slump, the spread test is simple and easy to operate, which can adequately characterize the rheological properties of paste backfill of tailings and guide in-situ backfilling.
-
Key words:
- paste /
- spread /
- cement-tailings ratio /
- yield stress /
- viscosity
-
表 1 尾砂的物理參數
Table 1. Physical parameters of tailings
Tailings Relative density Bulk density/(g·cm?3) Particle content/% Coefficient of unevenness, Cu Curvature coefficient, Cc <74 μm <37 μm Ploymetallic mine in Yunnan 3.204 1.136 82.39 64.55 12.5 0.98 Copper mine in Xinjiang 3.612 1.356 80.69 65.25 6.37 0.902 Lead-zinc mine in Indonesia 3.625 88.18 62.96 10.0 1.176 Gold mine in Inner Mongolia 2.792 67.91 53.28 20.0 0.512 Copper-nickel mine in Qinghai 2.997 1.328 67.675 48.493 15.1 1.185 表 2 尾砂膏體擴散度和流變參數測試結果
Table 2. Results of spread and rheological parameters test of tailings backfill paste
Cw/% Cement-tailings ratio Spread/cm Yield stress/Pa Viscosity/(Pa·s) 68 1∶4 20.85 14.677 0.0943 1∶6 19.65 13.569 0.0855 1∶8 20.45 13.412 0.0836 1∶10 19.80 13.413 0.0664 1∶20 21.10 14.791 0.0697 70 1∶4 17.55 27.730 0.1747 1∶6 17.00 27.085 0.1539 1∶8 16.85 25.132 0.1551 1∶10 17.45 25.356 0.1445 1∶20 17.25 24.721 0.1484 72 1∶4 12.10 55.031 0.2185 1∶6 12.55 50.266 0.2217 1∶8 12.50 53.892 0.2247 1∶10 12.35 50.024 0.1923 1∶20 12.70 51.697 0.2107 表 3 雙因素方差分析結果
Table 3. Results of two-way analysis of variance
Source Type III sum of squares df Mean square F Sig. Corrected model 163.607a 6 27.268 141.406 0.000 Intercept 4186.691 1 4186.691 21711.447 0.000 Cement-tailings ratio 0.589 4 0.147 0.764 0.577 Mass fraction 163.017 2 81.509 422.690 0.000 Error 1.543 8 0.193 Total 4351.840 15 Corrected total 165.149 14 Note: R Squared =0.991(Adjusted R Squared = 0.984). 表 4 驗證試驗結果
Table 4. Results of verification test
Tailings Cw/% Cement-tailings ratio Spread/cm Yield stress/Pa Absolute error Relative error/% Test results Calculation results Copper-nickel mine in Qinghai 60 0 29.7 2.807 2.143 ?0.664 23.671 62 0 29.1 3.0733 2.414 ?0.659 21.443 64 0 28.75 3.0663 2.588 ?0.478 15.585 66 0 26.5 4.795 4.050 ?0.745 15.530 68 0 24.4 6.2922 6.152 ?0.141 2.236 70 0 20.95 10.645 12.222 1.577 14.816 72 0 18.85 20.449 18.563 ?1.886 9.225 74 0 13.9 52.665 49.710 ?2.955 5.612 Gold mine in Inner Mongolia 56 8 19.1 20.904 17.662 ?3.242 15.510 56 20 19.4 20.113 16.638 ?3.475 17.276 58 8 14 44.683 48.730 4.047 9.057 58 20 13.8 48.185 50.709 2.524 5.237 60 8 12 70.233 72.552 2.319 3.301 60 20 11 97.512 88.526 ?8.986 9.215 259luxu-164 -
參考文獻
[1] Wu A X, Wang H J. Theory and Technology of Paste Filling in Metal Mine. Beijing: Science Press, 2015吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015 [2] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7):1 [3] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517 [4] Yang X C, Guo L J. Tailings and Waste Rock Comprehensive Utilization Technology. Beijing: Chemical Industry Press, 2018楊小聰, 郭利杰. 尾礦和廢石綜合利用技術. 北京: 化學工業出版社, 2018 [5] Dzuy N Q, Boger D V. Direct yield stress measurement with the vane method. J Rheol, 1985, 29(3): 335 doi: 10.1122/1.549794 [6] Wu A X, Cheng H Y, Wang Y M, et al. Transport resistance characteristic of paste pipeline considering effect of wall slip. Chin J Nonferrous Met, 2016, 26(1): 180吳愛祥, 程海勇, 王貽明, 等. 考慮管壁滑移效應膏體管道的輸送阻力特性. 中國有色金屬學報, 2016, 26(1):180 [7] Xu W B, Yang B G, Yang S L, et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry. J Cent South Univ Sci Technol, 2016, 47(4): 1282徐文彬, 楊寶貴, 楊勝利, 等. 矸石充填料漿流變特性與顆粒級配相關性試驗研究. 中南大學學報: 自然科學版, 2016, 47(4):1282 [8] Deng D Q, Gao Y T, Wu S C. Liquidity detection based on the slump testing of coarse aggregate filling material. J Beijing Inst Civil Eng Arch, 2009, 25(1): 30鄧代強, 高永濤, 吳順川. 基于坍落度測試的粗骨料充填料漿流動性檢驗. 北京建筑工程學院學報, 2009, 25(1):30 [9] Kang R H, Peng L, Yao Z L. Fluidity research on the filling slurry with coarse aggregate in Duddar lead-zinc mine. Min Res Dev, 2017, 37(3): 14康瑞海, 彭亮, 姚中亮. 杜達鉛鋅礦粗骨料充填料漿流動性研究. 礦業研究與開發, 2017, 37(3):14 [10] Saak A W, Jennings H M, Shah S P. A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res, 2004, 34(3): 363 doi: 10.1016/j.cemconres.2003.08.005 [11] Clayton S, Grice T G, Boger D V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process, 2003, 70(1-4): 3 doi: 10.1016/S0301-7516(02)00148-5 [12] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T 50080—2016 Standard for Test Method of Performance on Ordinary Fresh Concrete. Beijing: China Architecture Publishing, 2016中華人民共和國住房和城鄉建設部. GB/T 50080—2016普通混凝土拌合物性能試驗方法標準. 北京: 中國建筑工業出版社, 2016 [13] Shen H M, Wu A X, Jiang L C, et al. Small cylindrical slump test for unclassified tailings paste. J Cent South Univ Sci Technol, 2016, 47(1): 204沈慧明, 吳愛祥, 姜立春, 等. 全尾砂膏體小型圓柱塌落度檢測. 中南大學學報: 自然科學版, 2016, 47(1):204 [14] Tian S W, Ding Y, Lin G Z, et al. Experiment and application of super-mobility concrete. Concr, 2000(7): 48田世文, 丁宇, 林國志, 等. 超大流動度混凝土的試驗與應用. 混凝土, 2000(7):48 [15] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB T8077—2016 Method for Testing Uniformity of Concrete Admixture. Beijing: China Standard Press, 2012中華人民共和國國家質量監督檢驗檢疫總局. GB/T 8077—2012混凝土外加劑勻質性試驗方法. 北京: 中國標準出版社, 2012 [16] Liddel P V, Boger D V. Yield stress measurements with the vane. J Non-Newton Fluid Mech, 1996, 63(2-3): 235 doi: 10.1016/0377-0257(95)01421-7 [17] Wu A X, Jiao H Z, Wang H J, et al. Yield stress measurements and optimization of paste tailings. J Cent South Univ Sci Technol, 2013, 44(8): 3370吳愛祥, 焦華喆, 王洪江, 等. 膏體尾礦屈服應力檢測及其優化. 中南大學學報: 自然科學版, 2013, 44(8):3370 [18] Bauer E, de Sousa J G G, Guimaraes E A, et al. Study of the laboratory Vane test on mortars. Build Environ, 2007, 42(1): 86 doi: 10.1016/j.buildenv.2005.08.016 [19] Ye H W, Zhu L H. Using SPSS to make double factor variance analysis. J Hebei North Univ Nat Sci Ed, 2008, 24(2): 63葉紅衛, 朱藍輝. 應用SPSS進行雙因子方差分析. 河北北方學院學報: 自然科學版, 2008, 24(2):63 [20] Liu G, Yin N, Wang J B, et al. Interaction based variance analysis and design with double factors for non-repetition experiments. J Liaoning Normal Univ Nat Sci Ed, 2009, 32(3): 284劉剛, 殷那, 王吉波, 等. 基于交互作用的雙因素無重復試驗的方差分析與設計. 遼寧師范大學學報: 自然科學版, 2009, 32(3):284 [21] Wang J, Yang C, Zhang J, et al. Calculation method of the resistance loss in pipeline transportation of paste filling slurry. Met Mine, 2010(12): 33王劼, 楊超, 張軍, 等. 膏體充填管道輸送阻力損失計算方法. 金屬礦山, 2010(12):33 [22] Shi C X, Guo L J, Yang C, et al. Experimental study of the rheological parameters of a copper nickel mine tailings and calculation of resistance in pipeline transportation. China Min Mag, 2018, 27(Suppl 2): 138史采星, 郭利杰, 楊超, 等. 某銅鎳礦尾礦流變參數測試及管道輸送阻力計算. 中國礦業, 2018, 27(增刊 2):138 [23] Lan W T, Wu A X, Wang Y M. Study on gravity-flow filling times line of paste based on industrial-grade L-pipe. Ind Miner Process, 2019, 48(3): 9蘭文濤, 吳愛祥, 王貽明. 基于工業級L管的膏體自流充填倍線研究. 化工礦物與加工, 2019, 48(3):9 -