<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于擴散度的尾砂膏體流變特性

陳鑫政 楊小聰 郭利杰 許文遠 魏曉明

陳鑫政, 楊小聰, 郭利杰, 許文遠, 魏曉明. 基于擴散度的尾砂膏體流變特性[J]. 工程科學學報, 2020, 42(10): 1299-1307. doi: 10.13374/j.issn2095-9389.2020.02.18.003
引用本文: 陳鑫政, 楊小聰, 郭利杰, 許文遠, 魏曉明. 基于擴散度的尾砂膏體流變特性[J]. 工程科學學報, 2020, 42(10): 1299-1307. doi: 10.13374/j.issn2095-9389.2020.02.18.003
CHEN Xin-zheng, YANG Xiao-cong, GUO Li-jie, XU Wen-yuan, WEI Xiao-ming. Rheological properties of tailings paste based on a spread test[J]. Chinese Journal of Engineering, 2020, 42(10): 1299-1307. doi: 10.13374/j.issn2095-9389.2020.02.18.003
Citation: CHEN Xin-zheng, YANG Xiao-cong, GUO Li-jie, XU Wen-yuan, WEI Xiao-ming. Rheological properties of tailings paste based on a spread test[J]. Chinese Journal of Engineering, 2020, 42(10): 1299-1307. doi: 10.13374/j.issn2095-9389.2020.02.18.003

基于擴散度的尾砂膏體流變特性

doi: 10.13374/j.issn2095-9389.2020.02.18.003
基金項目: 國家重點研發計劃資助項目(2018YFE0123000)
詳細信息
    通訊作者:

    E-mail:guolijie@bgrimm.com

  • 中圖分類號: TD853

Rheological properties of tailings paste based on a spread test

More Information
  • 摘要: 借鑒水泥凈漿流動度測試方法,引入擴散度參數判別尾砂膏體的流變特性,開展試驗研究分析擴散度與尾砂膏體質量分數(Cw)、灰砂比、屈服應力和黏度系數的關系,根據5個礦山的擴散度和流變參數測試結果,構建擴散度與屈服應力的經驗模型,并與推導的解析模型作對比。結果表明:尾砂膏體的擴散度主要與質量分數有關,灰砂比對其影響不顯著,隨質量分數、屈服應力和黏度的增加而減小,質量分數為68%、70%和72%的尾砂膏體的擴散度分別為20.37、17.22和12.44 cm;尾砂膏體的擴散度與屈服應力的變化趨勢相吻合,二者呈指數型函數關系,經驗模型計算得到的屈服應力與測試結果誤差在25%范圍內,且尾砂膏體質量分數越大,二者的誤差越小,達到10%以內;解析模型與經驗模型計算所得的屈服應力在擴散度為12~16 cm之間結果較接近,解析模型計算結果整體上高于測試值;相比于坍落度,擴散度測試簡便易操作,擴散度能有效表征尾砂膏體的流變特性,指導礦山現場充填。

     

  • 圖  1  擴散度試驗裝置。(a)示意圖;(b)實物圖

    Figure  1.  Device of spread test: (a) schematic diagram; (b) physical image

    圖  2  坍落筒提起后前后應力的變化

    Figure  2.  Schematic diagram of the conical slump test, showing initial and final stress distributions

    圖  3  擴散度測試示意圖

    Figure  3.  Schematic diagram of spread test

    圖  4  尾砂粒徑分布曲線

    Figure  4.  Particle size distribution of tailings

    圖  5  R/S槳式流變儀

    Figure  5.  R/S paddle rheometer

    圖  6  灰砂比為1∶10的不同質量分數尾砂膏體擴散度測試結果。(a)質量分數為68%;(b)質量分數為70%;(c)質量分數為72%

    Figure  6.  Results of spread test of different tailings backfill paste with cement-tailings ratio 1∶10: (a) Cw=68%; (b) Cw=70%; (c) Cw=72%

    圖  7  不同配比尾砂膏體擴散度的變化。(a)擴散度隨質量分數的變化;(b)擴散度隨灰砂比的變化

    Figure  7.  Changes of the spread of tailings backfill paste with different filling ratio: (a) spread changes with mass fraction; (b) spread changes with cement-tailings ratio

    圖  8  擴散度與流變參數的變化規律。(a)擴散度隨屈服應力的變化;(b)擴散度隨黏度系數的變化

    Figure  8.  Changes of the spread of tailings backfill paste with rheological parameters: (a) spread changes with yield stress; (b) spread changes with viscosity

    圖  9  不同礦山尾砂膏體流變參數隨擴散度的分布圖。(a)屈服應力隨擴散度的分布;(b)黏度系數隨擴散度的分布

    Figure  9.  Distribution of rheological parameters of the different mine tailings backfill pastes: (a) distribution of yield stress and spread; (b) distribution of viscosity and spread

    圖  10  經驗模型和解析模型的對比

    Figure  10.  Comparison of analytical model and empirical model

    表  1  尾砂的物理參數

    Table  1.   Physical parameters of tailings

    TailingsRelative densityBulk density/(g·cm?3)Particle content/%Coefficient of unevenness, CuCurvature coefficient, Cc
    <74 μm<37 μm
    Ploymetallic mine in Yunnan3.2041.13682.3964.5512.50.98
    Copper mine in Xinjiang3.6121.35680.6965.256.370.902
    Lead-zinc mine in Indonesia3.62588.1862.9610.01.176
    Gold mine in Inner Mongolia2.79267.9153.2820.00.512
    Copper-nickel mine in Qinghai2.9971.32867.67548.49315.11.185
    下載: 導出CSV

    表  2  尾砂膏體擴散度和流變參數測試結果

    Table  2.   Results of spread and rheological parameters test of tailings backfill paste

    Cw/%Cement-tailings ratioSpread/cmYield stress/PaViscosity/(Pa·s)
    681∶420.8514.6770.0943
    1∶619.6513.5690.0855
    1∶820.4513.4120.0836
    1∶1019.8013.4130.0664
    1∶2021.1014.7910.0697
    701∶417.5527.7300.1747
    1∶617.0027.0850.1539
    1∶816.8525.1320.1551
    1∶1017.4525.3560.1445
    1∶2017.2524.7210.1484
    721∶412.1055.0310.2185
    1∶612.5550.2660.2217
    1∶812.5053.8920.2247
    1∶1012.3550.0240.1923
    1∶2012.7051.6970.2107
    下載: 導出CSV

    表  3  雙因素方差分析結果

    Table  3.   Results of two-way analysis of variance

    SourceType III sum of squaresdfMean squareFSig.
    Corrected model163.607a627.268141.4060.000
    Intercept4186.69114186.69121711.4470.000
    Cement-tailings ratio0.58940.1470.7640.577
    Mass fraction163.017281.509422.6900.000
    Error1.54380.193
    Total4351.84015
    Corrected total165.14914
    Note: R Squared =0.991(Adjusted R Squared = 0.984).
    下載: 導出CSV

    表  4  驗證試驗結果

    Table  4.   Results of verification test

    TailingsCw/%Cement-tailings ratioSpread/cmYield stress/PaAbsolute errorRelative error/%
    Test resultsCalculation results
    Copper-nickel mine in Qinghai60029.72.8072.143?0.66423.671
    62029.13.07332.414?0.65921.443
    64028.753.06632.588?0.47815.585
    66026.54.7954.050?0.74515.530
    68024.46.29226.152?0.1412.236
    70020.9510.64512.2221.57714.816
    72018.8520.44918.563?1.8869.225
    74013.952.66549.710?2.9555.612
    Gold mine in Inner Mongolia56819.120.90417.662?3.24215.510
    562019.420.11316.638?3.47517.276
    5881444.68348.7304.0479.057
    582013.848.18550.7092.5245.237
    6081270.23372.5522.3193.301
    60201197.51288.526?8.9869.215
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wu A X, Wang H J. Theory and Technology of Paste Filling in Metal Mine. Beijing: Science Press, 2015

    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015
    [2] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1

    吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7):1
    [3] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [4] Yang X C, Guo L J. Tailings and Waste Rock Comprehensive Utilization Technology. Beijing: Chemical Industry Press, 2018

    楊小聰, 郭利杰. 尾礦和廢石綜合利用技術. 北京: 化學工業出版社, 2018
    [5] Dzuy N Q, Boger D V. Direct yield stress measurement with the vane method. J Rheol, 1985, 29(3): 335 doi: 10.1122/1.549794
    [6] Wu A X, Cheng H Y, Wang Y M, et al. Transport resistance characteristic of paste pipeline considering effect of wall slip. Chin J Nonferrous Met, 2016, 26(1): 180

    吳愛祥, 程海勇, 王貽明, 等. 考慮管壁滑移效應膏體管道的輸送阻力特性. 中國有色金屬學報, 2016, 26(1):180
    [7] Xu W B, Yang B G, Yang S L, et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry. J Cent South Univ Sci Technol, 2016, 47(4): 1282

    徐文彬, 楊寶貴, 楊勝利, 等. 矸石充填料漿流變特性與顆粒級配相關性試驗研究. 中南大學學報: 自然科學版, 2016, 47(4):1282
    [8] Deng D Q, Gao Y T, Wu S C. Liquidity detection based on the slump testing of coarse aggregate filling material. J Beijing Inst Civil Eng Arch, 2009, 25(1): 30

    鄧代強, 高永濤, 吳順川. 基于坍落度測試的粗骨料充填料漿流動性檢驗. 北京建筑工程學院學報, 2009, 25(1):30
    [9] Kang R H, Peng L, Yao Z L. Fluidity research on the filling slurry with coarse aggregate in Duddar lead-zinc mine. Min Res Dev, 2017, 37(3): 14

    康瑞海, 彭亮, 姚中亮. 杜達鉛鋅礦粗骨料充填料漿流動性研究. 礦業研究與開發, 2017, 37(3):14
    [10] Saak A W, Jennings H M, Shah S P. A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res, 2004, 34(3): 363 doi: 10.1016/j.cemconres.2003.08.005
    [11] Clayton S, Grice T G, Boger D V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process, 2003, 70(1-4): 3 doi: 10.1016/S0301-7516(02)00148-5
    [12] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB/T 50080—2016 Standard for Test Method of Performance on Ordinary Fresh Concrete. Beijing: China Architecture Publishing, 2016

    中華人民共和國住房和城鄉建設部. GB/T 50080—2016普通混凝土拌合物性能試驗方法標準. 北京: 中國建筑工業出版社, 2016
    [13] Shen H M, Wu A X, Jiang L C, et al. Small cylindrical slump test for unclassified tailings paste. J Cent South Univ Sci Technol, 2016, 47(1): 204

    沈慧明, 吳愛祥, 姜立春, 等. 全尾砂膏體小型圓柱塌落度檢測. 中南大學學報: 自然科學版, 2016, 47(1):204
    [14] Tian S W, Ding Y, Lin G Z, et al. Experiment and application of super-mobility concrete. Concr, 2000(7): 48

    田世文, 丁宇, 林國志, 等. 超大流動度混凝土的試驗與應用. 混凝土, 2000(7):48
    [15] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB T8077—2016 Method for Testing Uniformity of Concrete Admixture. Beijing: China Standard Press, 2012

    中華人民共和國國家質量監督檢驗檢疫總局. GB/T 8077—2012混凝土外加劑勻質性試驗方法. 北京: 中國標準出版社, 2012
    [16] Liddel P V, Boger D V. Yield stress measurements with the vane. J Non-Newton Fluid Mech, 1996, 63(2-3): 235 doi: 10.1016/0377-0257(95)01421-7
    [17] Wu A X, Jiao H Z, Wang H J, et al. Yield stress measurements and optimization of paste tailings. J Cent South Univ Sci Technol, 2013, 44(8): 3370

    吳愛祥, 焦華喆, 王洪江, 等. 膏體尾礦屈服應力檢測及其優化. 中南大學學報: 自然科學版, 2013, 44(8):3370
    [18] Bauer E, de Sousa J G G, Guimaraes E A, et al. Study of the laboratory Vane test on mortars. Build Environ, 2007, 42(1): 86 doi: 10.1016/j.buildenv.2005.08.016
    [19] Ye H W, Zhu L H. Using SPSS to make double factor variance analysis. J Hebei North Univ Nat Sci Ed, 2008, 24(2): 63

    葉紅衛, 朱藍輝. 應用SPSS進行雙因子方差分析. 河北北方學院學報: 自然科學版, 2008, 24(2):63
    [20] Liu G, Yin N, Wang J B, et al. Interaction based variance analysis and design with double factors for non-repetition experiments. J Liaoning Normal Univ Nat Sci Ed, 2009, 32(3): 284

    劉剛, 殷那, 王吉波, 等. 基于交互作用的雙因素無重復試驗的方差分析與設計. 遼寧師范大學學報: 自然科學版, 2009, 32(3):284
    [21] Wang J, Yang C, Zhang J, et al. Calculation method of the resistance loss in pipeline transportation of paste filling slurry. Met Mine, 2010(12): 33

    王劼, 楊超, 張軍, 等. 膏體充填管道輸送阻力損失計算方法. 金屬礦山, 2010(12):33
    [22] Shi C X, Guo L J, Yang C, et al. Experimental study of the rheological parameters of a copper nickel mine tailings and calculation of resistance in pipeline transportation. China Min Mag, 2018, 27(Suppl 2): 138

    史采星, 郭利杰, 楊超, 等. 某銅鎳礦尾礦流變參數測試及管道輸送阻力計算. 中國礦業, 2018, 27(增刊 2):138
    [23] Lan W T, Wu A X, Wang Y M. Study on gravity-flow filling times line of paste based on industrial-grade L-pipe. Ind Miner Process, 2019, 48(3): 9

    蘭文濤, 吳愛祥, 王貽明. 基于工業級L管的膏體自流充填倍線研究. 化工礦物與加工, 2019, 48(3):9
  • 加載中
圖(10) / 表(4)
計量
  • 文章訪問數:  3168
  • HTML全文瀏覽量:  777
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-18
  • 刊出日期:  2020-10-25

目錄

    /

    返回文章
    返回