<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

影響煤自燃氣體產物釋放的主要活性官能團

趙婧昱 張永利 鄧軍 宋佳佳 王濤 張嬿妮 張宇軒

趙婧昱, 張永利, 鄧軍, 宋佳佳, 王濤, 張嬿妮, 張宇軒. 影響煤自燃氣體產物釋放的主要活性官能團[J]. 工程科學學報, 2020, 42(9): 1139-1148. doi: 10.13374/j.issn2095-9389.2020.02.17.001
引用本文: 趙婧昱, 張永利, 鄧軍, 宋佳佳, 王濤, 張嬿妮, 張宇軒. 影響煤自燃氣體產物釋放的主要活性官能團[J]. 工程科學學報, 2020, 42(9): 1139-1148. doi: 10.13374/j.issn2095-9389.2020.02.17.001
ZHAO Jing-yu, ZHANG Yong-li, DENG Jun, SONG Jia-jia, WANG Tao, ZHANG Yan-ni, ZHANG Yu-xuan. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal[J]. Chinese Journal of Engineering, 2020, 42(9): 1139-1148. doi: 10.13374/j.issn2095-9389.2020.02.17.001
Citation: ZHAO Jing-yu, ZHANG Yong-li, DENG Jun, SONG Jia-jia, WANG Tao, ZHANG Yan-ni, ZHANG Yu-xuan. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal[J]. Chinese Journal of Engineering, 2020, 42(9): 1139-1148. doi: 10.13374/j.issn2095-9389.2020.02.17.001

影響煤自燃氣體產物釋放的主要活性官能團

doi: 10.13374/j.issn2095-9389.2020.02.17.001
基金項目: 國家自然科學基金資助項目(51804246);陜西省教育廳專項科學研究計劃資助項目(19JK0536)
詳細信息
    通訊作者:

    E-mail: zhaojingyu90@xust.edu.cn

  • 中圖分類號: TD752.2

Key functional groups affecting the release of gaseous products during spontaneous combustion of coal

More Information
  • 摘要: 為了研究煤自燃發火氣體產物與煤分子官能團之間的內在聯系,進一步揭示煤自燃發火過程的微觀變化特性,利用程序升溫實驗裝置和原位紅外光譜分析實驗系統,得出了氣體產物生成量和活性官能團含量之間的關聯性。結果表明:CO、C2H4等指標氣體濃度伴隨溫度升高顯示為拋物線模式增長;活性官能團中,隨著溫度的不斷升高,脂肪烴含量先持續增大,之后開始逐漸下降,C=C雙鍵含量不斷下降,含氧官能團含量先趨于穩定后逐漸增加。根據指標氣體濃度變化,獲得了高溫反應過程中的5個特征溫度點,進一步將其分為臨界溫度階段、干裂–活性–增速溫度階段、增速–燃點溫度階段和燃燒階段4個階段,并對三個高溫氧化階段進行關聯性分析發現:在臨界溫度階段,影響CO、CO2、CH4和C2H6氣體釋放的主要活性官能團是羰基;在干裂–活性–增速溫度階段烷基鏈和橋鍵發生大量斷裂,影響氣體產物的主要活性官能團是脂肪烴和羰基;在增速–燃點溫度階段氣體濃度與羰基和羧基等官能團呈負相關。得出干裂–活性–增速溫度階段是高溫氧化過程中的危險階段,需在該階段前對氧化反應進行控制,以減少人員和物質損失。

     

  • 圖  1  XKGW-1型高溫程序升溫實驗裝置

    Figure  1.  High-temperature-programmed experimental system of XKGW-1

    圖  2  氧氣隨溫度變化規律曲線

    Figure  2.  Curves of oxygen volume fraction and temperature

    圖  3  CO體積分數和溫度變化趨勢

    Figure  3.  Curve of CO volume fraction and temperature

    圖  4  CO2體積分數和溫度變化趨勢

    Figure  4.  Curve of CO2 volume fraction and temperature

    圖  5  新莊孜煤樣增長率分析法測試特征溫度點分析圖

    Figure  5.  Characteristic temperatures of the growth rate of Xinzhuangzi coal

    圖  6  C?H氣體體積分數和溫度變化趨勢。(a)CH4;(b)C2H4;(c)C2H6

    Figure  6.  Curve of the volume fraction and temperature of C–H gaseous products: (a) CH4; (b) C2H4; (c) C2H6

    圖  7  羥基隨溫度變化曲線

    Figure  7.  Curves of the changes in –OH with an increase in the temperature

    圖  8  脂肪烴隨溫度變化曲線圖

    Figure  8.  Curves of the changes in aliphatic hydrocarbons with an increase in temperature

    圖  9  芳烴隨溫度變化曲線

    Figure  9.  Curves of the changes in aromatic hydrocarbons with an increase in temperature

    圖  10  C=C雙鍵隨溫度變化曲線

    Figure  10.  Curves of the changes in C=C with an increase in temperature

    圖  11  含氧官能團隨溫度變化曲線

    Figure  11.  Curves of the changes in oxygen-containing function groups with an increase in temperature

    表  1  煤的工業分析與元素分析(質量分數)

    Table  1.   Proximate and ultimate analysis of coal %

    SamplesMadAadVadCHON
    Dingji1.6417.9232.8467.634.6514.801.58
    Pansan1.4417.3831.9372.384.7713.291.79
    Zhangji1.6411.3532.7075.904.7711.241.59
    Guqiao1.5016.2035.9276.755.0011.451.90
    Gubei1.818.6536.3576.855.0810.731.89
    Xinzhuangzi0.9512.9224.3277.534.628.701.68
    下載: 導出CSV

    表  2  煤樣特征溫度

    Table  2.   Characteristic temperatures of coal

    SamplesT1T2T3T4T5
    Dingji99.3157.6205.4262.3368.5
    Pansan90.3150.2211.5269.8392.4
    Zhangji102.3147.1191.9260.8417.9
    Guqiao101.5143.1190.2251.4385.7
    Gubei96.3131.9184.5248.9363.9
    Xinzhuangzi97.9142.2219.0260.9384.6
    下載: 導出CSV

    表  3  煤主要吸收譜峰歸屬表

    Table  3.   Main characteristic peaks of coal

    Spectral peak typeWavenumber/ cm–1Functional groupAssignment
    Hydroxyl3697?3625–OHFree hydroxyl
    3624?3613–OHIntramolecular hydrogen bond
    3550?3200–OHIntermolecular hydrogen bond
    Aliphatic hydrocarbons2975?2950–CH3Asymmetric stretching vibration of methyl
    2940?2915–CH2Asymmetric stretching vibration of methylene
    2870?2845–CH2Symmetric stretching vibration of methylene
    1470?1430–CH3Methyl deformation vibration
    1380?1370–CH3Methyl deformation vibration
    Aromatic hydrocarbons3085?3030Ar–CHAromatic CH stretching vibration
    1625?1575C=CC=C stretching vibration in aromatic ring
    900?700Ar–CHAromatic CH out-of-plane bending modes
    Oxygen-containing functional groups1790?1715C=OCarbonyl stretching vibration of ester with electron withdrawing
    group attached to single bonded oxygen
    1715?1690–COOHCarboxyl stretching vibration
    1270?1230ArC–CAromatic oxide stretching vibration
    1210?1015C–O–CAliphatic ether stretching vibration
    下載: 導出CSV

    表  4  不同階段煤樣產生CO與CO2氣體的主要活性官能團

    Table  4.   Active functional groups for producing CO and CO2 from coal samples at different stages

    Temperature stagesGaseous productsDingjiPansanZhangjiGuqiaoGubeiXinzhuangzi
    Critical temperature stageCOAr–O–CO–RR–O–CO–RAr–O–CO–RAr–O–CO–RR–O–CO–RR–O–CO–R
    CO2Ar–O–CO–RAr–CH–COOHAr–O–CO–RAr–CHR–O–CO–R
    Crack?active?speedup temperature stageCOAr–O–CO–RR–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–R
    CO2Ar–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–R
    Speedup?ignition temperature stageCOR–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–Ar
    CO2–CH2Ar–O–CO–RAr–O–CO–RAr–O–CO–RR–O–CO–RR–O–CO–R
    下載: 導出CSV

    表  5  不同階段煤樣產生CH4、C2H4與C2H6氣體的主要活性官能團

    Table  5.   Active functional groups for producing CH4, C2H4, and C2H6 gases from coal samples at different stages

    Temperature stagesGaseous productsDingjiPansanZhangjiGuqiaoGubeiXinzhuangzi
    Critical temperature stageCH4Ar–O–CO–RR–O–CO–RAr–O–CO–RAr–O–CO–RR–O–CO–RR–O–CO–R
    C2H4
    C2H6Ar–O–CO–RAr–O–CO–R–CH3R–O–CO–RAr–O–CO–RR–O–CO–R
    Crack?active?speedup temperature stageCH4Ar–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–R
    C2H4Ar–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–R
    C2H6Ar–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RR–O–CO–R
    Speedup?ignition temperature stageCH4Ar–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–R
    C2H4Ar–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–RAr–O–CO–R
    C2H6Ar–O–CO–RAr–O–CO–RR–O–CO–RAr–O–CO–RAr–O–CO–R–CH2
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhou F B. Study on the coexistence of gas and coal spontaneous combustion (Ⅰ): Disaster mechanism. <italic>J China Coal Soc</italic>, 2012, 37(5): 843

    周福寶. 瓦斯與煤自燃共存研究(Ⅰ): 致災機理. 煤炭學報, 2012, 37(5):843
    [2] Cheng W M, Hu X M, Xie J, et al. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. <italic>Fuel</italic>, 2017, 210: 826 doi: 10.1016/j.fuel.2017.09.007
    [3] Zhao J, Zuo H B, Long S Y, et al. Combustion characteristics of thermal dissolution coal. <italic>Chin J Eng</italic>, 2018, 40(3): 330

    趙駿, 左海濱, 龍思陽, 等. 熱溶煤的燃燒特性. 工程科學學報, 2018, 40(3):330
    [4] Dong X W, Wen Z C, Wang F S, et al. Law of gas production during coal heating oxidation. <italic>Int J Min Sci Technol</italic>, 2019, 29(4): 617 doi: 10.1016/j.ijmst.2019.06.011
    [5] Grossman S L, Davidi S, Cohen H. Emission of toxic and fire hazardous gases from open air coal stockpiles. <italic>Fuel</italic>, 1994, 73(7): 1184 doi: 10.1016/0016-2361(94)90257-7
    [6] Yan R L, Qian G Y. Molecular structure of coal and gases produced by coal oxidation. J China Coal Soc, 1995, 20(Suppl): 58

    嚴榮林, 錢國胤. 煤的分子結構與煤氧化自燃的氣體產物. 煤炭學報, 1995, 20(增刊): 58
    [7] He P, Wang F Y, Tang X Y, et al. Characteristics of gases produced in process of coal oxidation and their relations with selection of gas markers for prediction of spontaneous combustion. <italic>J China Coal Soc</italic>, 1994, 19(6): 635

    何萍, 王飛宇, 唐修義, 等. 煤氧化過程中氣體的形成特征與煤自燃指標氣體選擇. 煤炭學報, 1994, 19(6):635
    [8] Liu H X. Characteristics of Coal Spontaneous Combustion Gas in Goaf of Jiang Yuan Coal Mine and Its Influence on Gas Explosion[Dissertation]. Xuzhou: China University of Mining and Technology, 2019

    劉浩雄. 江源煤礦采空區煤自燃氣體特征及其對瓦斯爆炸影響研究[學位論文]. 徐州: 中國礦業大學, 2019
    [9] Jia C Z, Ding J L. Reliability prediction of coal spontaneous combustion based on grey correlation analysis. <italic>Inner Mongolia Coal Econ</italic>, 2018(12): 4

    賈傳志, 丁佳麗. 基于灰色關聯分析的煤自燃預測指標可信度研究. 內蒙古煤炭經濟, 2018(12):4
    [10] Niu H Y, Deng X L, Li S L, et al. Experiment study of optimization on prediction index gases of coal spontaneous combustion. <italic>J Cent South Univ</italic>, 2016, 23(9): 2321 doi: 10.1007/s11771-016-3290-y
    [11] Wang D M, Dou G L, Zhong X X, et al. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. <italic>Fuel</italic>, 2014, 117: 218 doi: 10.1016/j.fuel.2013.09.070
    [12] Yang Y C, Zhao H, Yin B. Experimental research about coal spontaneous combustion index gas. <italic>Saf Coal Mines</italic>, 2012, 43(9): 17

    楊永辰, 趙賀, 尹博. 煤炭自燃標志性氣體實驗研究. 煤礦安全, 2012, 43(9):17
    [13] Zhao J Y. Study on the Kinetics and Micro-structures Characteristics of Huainan Coal in the Oxidation Process[Dissertation]. Xi'an: Xi'an University of Science and Technology, 2017

    趙婧昱. 淮南煤氧化動力學過程及其微觀結構演化特征研究[學位論文]. 西安: 西安科技大學, 2017
    [14] Liu X F, Song D Z, He X Q, et al. Coal macromolecular structural characteristic and its influence on coalbed methane adsorption. <italic>Fuel</italic>, 2018, 222: 687 doi: 10.1016/j.fuel.2018.03.015
    [15] Zhao W B, Cai H L, Song L, et al. Study on spontaneous combustion of coal at different temperatures in same coal seam. <italic>Coal Technol</italic>, 2018, 37(11): 153

    趙文彬, 蔡海倫, 宋蕾, 等. 同一煤層煤樣不同溫度下煤自燃規律研究. 煤炭技術, 2018, 37(11):153
    [16] Wang F S, Sun C, Dong X W, et al. Analysis of microstructure of coal effect on spontaneous combustion tendency. <italic>Coal Technol</italic>, 2017, 36(12): 139

    王福生, 孫超, 董憲偉, 等. 煤的微觀結構對自燃特性的影響分析. 煤炭技術, 2017, 36(12):139
    [17] Yu M G, Jia H L, Xu J. Relationship analysis between micro-structure of bituminous coal from Wuda and coal spontaneous combustion. <italic>J Liaoning Tech Univ Nat Sci Ed</italic>, 2006, 25(6): 819

    余明高, 賈海林, 徐俊. 烏達煙煤的微觀結構與自燃的關聯性分析. 遼寧工程技術大學學報: 自然科學版, 2006, 25(6):819
    [18] Xuan W W, Wang Q, Zhang J S. Spontaneous combustion propensity and low-temperature oxidation process of lignite. <italic>J China Coal Soc</italic>, 2016, 41(10): 2460

    玄偉偉, 王倩, 張建勝. 褐煤自燃傾向測定及其低溫氧化反應過程研究. 煤炭學報, 2016, 41(10):2460
    [19] Zhang Y N, Deng J, Yang H, et al. Experimental study of the characteristic features of the microstructure of coal at different coal sorts. <italic>J Saf Environ</italic>, 2014, 14(4): 67

    張嬿妮, 鄧軍, 楊華, 等. 不同變質程度煤微觀結構特征的試驗研究. 安全與環境學報, 2014, 14(4):67
    [20] Tang Y B, Li Y F, Xue S, et al. Experimental investigation of long-term water immersion effect on spontaneous combustion parameters and microscopic characteristics of bituminous. <italic>J China Coal Soc</italic>, 2017, 42(10): 2642

    唐一博, 李云飛, 薛生, 等. 長期水浸對不同煙煤自燃參數與微觀特性影響的實驗研究. 煤炭學報, 2017, 42(10):2642
    [21] Wan Y J, Cao Z Q, Zhang S, et al. Distribution regulation of functional groups under low temperature of different coals. <italic>Coal Chem Ind</italic>, 2017, 40(2): 23

    萬有吉, 曹占清, 張杉, 等. 不同煤種低溫氧化下的官能團分布規律. 煤炭與化工, 2017, 40(2):23
    [22] Deng J, Xiao Y, Li Q W, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal. <italic>Fuel</italic>, 2015, 157: 261 doi: 10.1016/j.fuel.2015.04.063
    [23] Kong B, Li Z H, Wang E Y, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. <italic>Process Saf Environ Prot</italic>, 2018, 119: 285 doi: 10.1016/j.psep.2018.08.002
    [24] Zhao J Y, Zhang Y X, Song J J, et al. Coal spontaneous combustion indicator gases analysis of different temperature stages upon high-temperature and low-oxygen condition. <italic>J Xi'an Univ Sci Technol</italic>, 2019, 39(2): 189

    趙婧昱, 張宇軒, 宋佳佳, 等. 高溫貧氧下不同溫度階段煤體自燃指標氣體測試. 西安科技大學學報, 2019, 39(2):189
    [25] Qu L N. A study on the prediction method of coal spontaneous combustion development period based on critical temperature. <italic>Environ Sci Pollut Res</italic>, 2018, 25(12): 35748
    [26] Jin Y F, Guo J, Wen H, et al. Experimental study on the high temperature lean oxidation combustion characteristic parameters of coal spontaneous combustion. <italic>J China Coal Soc</italic>, 2015, 40(3): 596

    金永飛, 郭軍, 文虎, 等. 煤自燃高溫貧氧氧化燃燒特性參數的實驗研究. 煤炭學報, 2015, 40(3):596
    [27] Zhu L Q, Deng Y, Wang F S. Index gas optimization of coal spontaneous combustion with different metamorphic degree. <italic>Coal Technol</italic>, 2019, 38(9): 71

    朱令起, 鄧毅, 王福生. 不同變質程度煤自燃指標氣體優選. 煤炭技術, 2019, 38(9):71
    [28] Zhao J Y, Deng J, Song J J, et al. Effectiveness of a high-temperature-programmed experimental system in simulating particle size effects on hazardous gas emissions in bituminous coal. <italic>Saf Sci</italic>, 2019, 115: 353 doi: 10.1016/j.ssci.2019.02.008
    [29] Zhao J Y, Deng J, Wang T, et al. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. <italic>Energy</italic>, 2019, 169: 587 doi: 10.1016/j.energy.2018.12.100
    [30] Deng J, Zhao J Y, Zhang Y N. Study on determination of coal spontaneous combustion characteristic temperature based on analysis method of index gas growth-rate. <italic>Coal Sci Technol</italic>, 2014, 42(7): 49

    鄧軍, 趙婧昱, 張嬿妮. 基于指標氣體增長率分析法測定煤自燃特征溫度. 煤炭科學技術, 2014, 42(7):49
    [31] Li G H, Bi J Y, Zhang H, et al. Study on natural ignition characteristic test of No.13 coal seam. <italic>Coal Chem Ind</italic>, 2018, 41(4): 111

    李國輝, 畢建乙, 張輝, 等. 斜溝煤礦13號煤層自然發火特性試驗研究. 煤炭與化工, 2018, 41(4):111
    [32] Deng J, Zhao J Y, Xiao Y, et al. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. <italic>J Therm Anal Calorim</italic>, 2017, 129(3): 1779 doi: 10.1007/s10973-017-6331-3
    [33] Zhao J Y, Deng J, Chen L, et al. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. <italic>Energy</italic>, 2019, 181: 136 doi: 10.1016/j.energy.2019.05.158
  • 加載中
圖(11) / 表(5)
計量
  • 文章訪問數:  1714
  • HTML全文瀏覽量:  959
  • PDF下載量:  31
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-17
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回