Key functional groups affecting the release of gaseous products during spontaneous combustion of coal
-
摘要: 為了研究煤自燃發火氣體產物與煤分子官能團之間的內在聯系,進一步揭示煤自燃發火過程的微觀變化特性,利用程序升溫實驗裝置和原位紅外光譜分析實驗系統,得出了氣體產物生成量和活性官能團含量之間的關聯性。結果表明:CO、C2H4等指標氣體濃度伴隨溫度升高顯示為拋物線模式增長;活性官能團中,隨著溫度的不斷升高,脂肪烴含量先持續增大,之后開始逐漸下降,C=C雙鍵含量不斷下降,含氧官能團含量先趨于穩定后逐漸增加。根據指標氣體濃度變化,獲得了高溫反應過程中的5個特征溫度點,進一步將其分為臨界溫度階段、干裂–活性–增速溫度階段、增速–燃點溫度階段和燃燒階段4個階段,并對三個高溫氧化階段進行關聯性分析發現:在臨界溫度階段,影響CO、CO2、CH4和C2H6氣體釋放的主要活性官能團是羰基;在干裂–活性–增速溫度階段烷基鏈和橋鍵發生大量斷裂,影響氣體產物的主要活性官能團是脂肪烴和羰基;在增速–燃點溫度階段氣體濃度與羰基和羧基等官能團呈負相關。得出干裂–活性–增速溫度階段是高溫氧化過程中的危險階段,需在該階段前對氧化反應進行控制,以減少人員和物質損失。Abstract: Coal–oxygen reaction theory, which is widely accepted, considers the reaction of coal and oxygen during combustion. In this research, the characteristics of spontaneous coal combustion were assessed at a high temperature to investigate the internal relationship between the gaseous products of this reaction and the functional groups in coal molecules and to further reveal the micro-characteristics of spontaneous coal combustion. Our self-developed temperature-programmed experimental system and in situ diffuse reflectance infrared Fourier transform spectroscopy were adopted to analyze the correlation between the contents of gaseous products and active functional groups. Results reveal that the contents of indicator gases, such as CO and C2H4, increase and show a parabolic curve. In terms of active functional groups, as temperature increases, the content of aliphatic hydrocarbons initially increases and then decreases gradually. The content of C=C groups decreases throughout this study, and the content of oxygen-containing functional groups gradually increases after equilibrium is reached. Five characteristic temperatures are obtained on the basis of the variation in gaseous products, and four oxidation stages are further divided. The relationship between active functional groups and gases during different temperature stages is determined. At the critical temperature stage, the main active functional group affecting the release of CO, CO2, CH4, and C2H6 is carbonyl. Numerous alkyl chains and bridge bonds are broken at the crack?active?speedup temperature stage, and the primary active functional groups influencing the gas products are aliphatic hydrocarbons and carbonyl groups. The concentration of gases at the speedup?ignition temperature stage is negatively correlated with carbonyl and carboxyl groups. Therefore, the crack?active?speedup temperature stage in high-temperature oxidation is dangerous, and oxidation should be controlled before this stage to reduce the loss of personnel and materials.
-
表 1 煤的工業分析與元素分析(質量分數)
Table 1. Proximate and ultimate analysis of coal
% Samples Mad Aad Vad C H O N Dingji 1.64 17.92 32.84 67.63 4.65 14.80 1.58 Pansan 1.44 17.38 31.93 72.38 4.77 13.29 1.79 Zhangji 1.64 11.35 32.70 75.90 4.77 11.24 1.59 Guqiao 1.50 16.20 35.92 76.75 5.00 11.45 1.90 Gubei 1.81 8.65 36.35 76.85 5.08 10.73 1.89 Xinzhuangzi 0.95 12.92 24.32 77.53 4.62 8.70 1.68 表 2 煤樣特征溫度
Table 2. Characteristic temperatures of coal
℃ Samples T1 T2 T3 T4 T5 Dingji 99.3 157.6 205.4 262.3 368.5 Pansan 90.3 150.2 211.5 269.8 392.4 Zhangji 102.3 147.1 191.9 260.8 417.9 Guqiao 101.5 143.1 190.2 251.4 385.7 Gubei 96.3 131.9 184.5 248.9 363.9 Xinzhuangzi 97.9 142.2 219.0 260.9 384.6 表 3 煤主要吸收譜峰歸屬表
Table 3. Main characteristic peaks of coal
Spectral peak type Wavenumber/ cm–1 Functional group Assignment Hydroxyl 3697?3625 –OH Free hydroxyl 3624?3613 –OH Intramolecular hydrogen bond 3550?3200 –OH Intermolecular hydrogen bond Aliphatic hydrocarbons 2975?2950 –CH3 Asymmetric stretching vibration of methyl 2940?2915 –CH2– Asymmetric stretching vibration of methylene 2870?2845 –CH2– Symmetric stretching vibration of methylene 1470?1430 –CH3 Methyl deformation vibration 1380?1370 –CH3 Methyl deformation vibration Aromatic hydrocarbons 3085?3030 Ar–CH Aromatic CH stretching vibration 1625?1575 C=C C=C stretching vibration in aromatic ring 900?700 Ar–CH Aromatic CH out-of-plane bending modes Oxygen-containing functional groups 1790?1715 C=O Carbonyl stretching vibration of ester with electron withdrawing
group attached to single bonded oxygen1715?1690 –COOH Carboxyl stretching vibration 1270?1230 ArC–C Aromatic oxide stretching vibration 1210?1015 C–O–C Aliphatic ether stretching vibration 表 4 不同階段煤樣產生CO與CO2氣體的主要活性官能團
Table 4. Active functional groups for producing CO and CO2 from coal samples at different stages
Temperature stages Gaseous products Dingji Pansan Zhangji Guqiao Gubei Xinzhuangzi Critical temperature stage CO Ar–O–CO–R R–O–CO–R Ar–O–CO–R Ar–O–CO–R R–O–CO–R R–O–CO–R CO2 Ar–O–CO–R Ar–CH –COOH Ar–O–CO–R Ar–CH R–O–CO–R Crack?active?speedup temperature stage CO Ar–O–CO–R R–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R CO2 Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Speedup?ignition temperature stage CO R–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–Ar CO2 –CH2– Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R R–O–CO–R R–O–CO–R 表 5 不同階段煤樣產生CH4、C2H4與C2H6氣體的主要活性官能團
Table 5. Active functional groups for producing CH4, C2H4, and C2H6 gases from coal samples at different stages
Temperature stages Gaseous products Dingji Pansan Zhangji Guqiao Gubei Xinzhuangzi Critical temperature stage CH4 Ar–O–CO–R R–O–CO–R Ar–O–CO–R Ar–O–CO–R R–O–CO–R R–O–CO–R C2H4 ― ― ― ― ― ― C2H6 Ar–O–CO–R Ar–O–CO–R –CH3 R–O–CO–R Ar–O–CO–R R–O–CO–R Crack?active?speedup temperature stage CH4 Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R C2H4 Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R C2H6 Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R R–O–CO–R Speedup?ignition temperature stage CH4 Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R C2H4 Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R Ar–O–CO–R C2H6 Ar–O–CO–R Ar–O–CO–R R–O–CO–R Ar–O–CO–R Ar–O–CO–R –CH2– 259luxu-164 -
參考文獻
[1] Zhou F B. Study on the coexistence of gas and coal spontaneous combustion (Ⅰ): Disaster mechanism. <italic>J China Coal Soc</italic>, 2012, 37(5): 843周福寶. 瓦斯與煤自燃共存研究(Ⅰ): 致災機理. 煤炭學報, 2012, 37(5):843 [2] Cheng W M, Hu X M, Xie J, et al. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties. <italic>Fuel</italic>, 2017, 210: 826 doi: 10.1016/j.fuel.2017.09.007 [3] Zhao J, Zuo H B, Long S Y, et al. Combustion characteristics of thermal dissolution coal. <italic>Chin J Eng</italic>, 2018, 40(3): 330趙駿, 左海濱, 龍思陽, 等. 熱溶煤的燃燒特性. 工程科學學報, 2018, 40(3):330 [4] Dong X W, Wen Z C, Wang F S, et al. Law of gas production during coal heating oxidation. <italic>Int J Min Sci Technol</italic>, 2019, 29(4): 617 doi: 10.1016/j.ijmst.2019.06.011 [5] Grossman S L, Davidi S, Cohen H. Emission of toxic and fire hazardous gases from open air coal stockpiles. <italic>Fuel</italic>, 1994, 73(7): 1184 doi: 10.1016/0016-2361(94)90257-7 [6] Yan R L, Qian G Y. Molecular structure of coal and gases produced by coal oxidation. J China Coal Soc, 1995, 20(Suppl): 58嚴榮林, 錢國胤. 煤的分子結構與煤氧化自燃的氣體產物. 煤炭學報, 1995, 20(增刊): 58 [7] He P, Wang F Y, Tang X Y, et al. Characteristics of gases produced in process of coal oxidation and their relations with selection of gas markers for prediction of spontaneous combustion. <italic>J China Coal Soc</italic>, 1994, 19(6): 635何萍, 王飛宇, 唐修義, 等. 煤氧化過程中氣體的形成特征與煤自燃指標氣體選擇. 煤炭學報, 1994, 19(6):635 [8] Liu H X. Characteristics of Coal Spontaneous Combustion Gas in Goaf of Jiang Yuan Coal Mine and Its Influence on Gas Explosion[Dissertation]. Xuzhou: China University of Mining and Technology, 2019劉浩雄. 江源煤礦采空區煤自燃氣體特征及其對瓦斯爆炸影響研究[學位論文]. 徐州: 中國礦業大學, 2019 [9] Jia C Z, Ding J L. Reliability prediction of coal spontaneous combustion based on grey correlation analysis. <italic>Inner Mongolia Coal Econ</italic>, 2018(12): 4賈傳志, 丁佳麗. 基于灰色關聯分析的煤自燃預測指標可信度研究. 內蒙古煤炭經濟, 2018(12):4 [10] Niu H Y, Deng X L, Li S L, et al. Experiment study of optimization on prediction index gases of coal spontaneous combustion. <italic>J Cent South Univ</italic>, 2016, 23(9): 2321 doi: 10.1007/s11771-016-3290-y [11] Wang D M, Dou G L, Zhong X X, et al. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. <italic>Fuel</italic>, 2014, 117: 218 doi: 10.1016/j.fuel.2013.09.070 [12] Yang Y C, Zhao H, Yin B. Experimental research about coal spontaneous combustion index gas. <italic>Saf Coal Mines</italic>, 2012, 43(9): 17楊永辰, 趙賀, 尹博. 煤炭自燃標志性氣體實驗研究. 煤礦安全, 2012, 43(9):17 [13] Zhao J Y. Study on the Kinetics and Micro-structures Characteristics of Huainan Coal in the Oxidation Process[Dissertation]. Xi'an: Xi'an University of Science and Technology, 2017趙婧昱. 淮南煤氧化動力學過程及其微觀結構演化特征研究[學位論文]. 西安: 西安科技大學, 2017 [14] Liu X F, Song D Z, He X Q, et al. Coal macromolecular structural characteristic and its influence on coalbed methane adsorption. <italic>Fuel</italic>, 2018, 222: 687 doi: 10.1016/j.fuel.2018.03.015 [15] Zhao W B, Cai H L, Song L, et al. Study on spontaneous combustion of coal at different temperatures in same coal seam. <italic>Coal Technol</italic>, 2018, 37(11): 153趙文彬, 蔡海倫, 宋蕾, 等. 同一煤層煤樣不同溫度下煤自燃規律研究. 煤炭技術, 2018, 37(11):153 [16] Wang F S, Sun C, Dong X W, et al. Analysis of microstructure of coal effect on spontaneous combustion tendency. <italic>Coal Technol</italic>, 2017, 36(12): 139王福生, 孫超, 董憲偉, 等. 煤的微觀結構對自燃特性的影響分析. 煤炭技術, 2017, 36(12):139 [17] Yu M G, Jia H L, Xu J. Relationship analysis between micro-structure of bituminous coal from Wuda and coal spontaneous combustion. <italic>J Liaoning Tech Univ Nat Sci Ed</italic>, 2006, 25(6): 819余明高, 賈海林, 徐俊. 烏達煙煤的微觀結構與自燃的關聯性分析. 遼寧工程技術大學學報: 自然科學版, 2006, 25(6):819 [18] Xuan W W, Wang Q, Zhang J S. Spontaneous combustion propensity and low-temperature oxidation process of lignite. <italic>J China Coal Soc</italic>, 2016, 41(10): 2460玄偉偉, 王倩, 張建勝. 褐煤自燃傾向測定及其低溫氧化反應過程研究. 煤炭學報, 2016, 41(10):2460 [19] Zhang Y N, Deng J, Yang H, et al. Experimental study of the characteristic features of the microstructure of coal at different coal sorts. <italic>J Saf Environ</italic>, 2014, 14(4): 67張嬿妮, 鄧軍, 楊華, 等. 不同變質程度煤微觀結構特征的試驗研究. 安全與環境學報, 2014, 14(4):67 [20] Tang Y B, Li Y F, Xue S, et al. Experimental investigation of long-term water immersion effect on spontaneous combustion parameters and microscopic characteristics of bituminous. <italic>J China Coal Soc</italic>, 2017, 42(10): 2642唐一博, 李云飛, 薛生, 等. 長期水浸對不同煙煤自燃參數與微觀特性影響的實驗研究. 煤炭學報, 2017, 42(10):2642 [21] Wan Y J, Cao Z Q, Zhang S, et al. Distribution regulation of functional groups under low temperature of different coals. <italic>Coal Chem Ind</italic>, 2017, 40(2): 23萬有吉, 曹占清, 張杉, 等. 不同煤種低溫氧化下的官能團分布規律. 煤炭與化工, 2017, 40(2):23 [22] Deng J, Xiao Y, Li Q W, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal. <italic>Fuel</italic>, 2015, 157: 261 doi: 10.1016/j.fuel.2015.04.063 [23] Kong B, Li Z H, Wang E Y, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. <italic>Process Saf Environ Prot</italic>, 2018, 119: 285 doi: 10.1016/j.psep.2018.08.002 [24] Zhao J Y, Zhang Y X, Song J J, et al. Coal spontaneous combustion indicator gases analysis of different temperature stages upon high-temperature and low-oxygen condition. <italic>J Xi'an Univ Sci Technol</italic>, 2019, 39(2): 189趙婧昱, 張宇軒, 宋佳佳, 等. 高溫貧氧下不同溫度階段煤體自燃指標氣體測試. 西安科技大學學報, 2019, 39(2):189 [25] Qu L N. A study on the prediction method of coal spontaneous combustion development period based on critical temperature. <italic>Environ Sci Pollut Res</italic>, 2018, 25(12): 35748 [26] Jin Y F, Guo J, Wen H, et al. Experimental study on the high temperature lean oxidation combustion characteristic parameters of coal spontaneous combustion. <italic>J China Coal Soc</italic>, 2015, 40(3): 596金永飛, 郭軍, 文虎, 等. 煤自燃高溫貧氧氧化燃燒特性參數的實驗研究. 煤炭學報, 2015, 40(3):596 [27] Zhu L Q, Deng Y, Wang F S. Index gas optimization of coal spontaneous combustion with different metamorphic degree. <italic>Coal Technol</italic>, 2019, 38(9): 71朱令起, 鄧毅, 王福生. 不同變質程度煤自燃指標氣體優選. 煤炭技術, 2019, 38(9):71 [28] Zhao J Y, Deng J, Song J J, et al. Effectiveness of a high-temperature-programmed experimental system in simulating particle size effects on hazardous gas emissions in bituminous coal. <italic>Saf Sci</italic>, 2019, 115: 353 doi: 10.1016/j.ssci.2019.02.008 [29] Zhao J Y, Deng J, Wang T, et al. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. <italic>Energy</italic>, 2019, 169: 587 doi: 10.1016/j.energy.2018.12.100 [30] Deng J, Zhao J Y, Zhang Y N. Study on determination of coal spontaneous combustion characteristic temperature based on analysis method of index gas growth-rate. <italic>Coal Sci Technol</italic>, 2014, 42(7): 49鄧軍, 趙婧昱, 張嬿妮. 基于指標氣體增長率分析法測定煤自燃特征溫度. 煤炭科學技術, 2014, 42(7):49 [31] Li G H, Bi J Y, Zhang H, et al. Study on natural ignition characteristic test of No.13 coal seam. <italic>Coal Chem Ind</italic>, 2018, 41(4): 111李國輝, 畢建乙, 張輝, 等. 斜溝煤礦13號煤層自然發火特性試驗研究. 煤炭與化工, 2018, 41(4):111 [32] Deng J, Zhao J Y, Xiao Y, et al. Thermal analysis of the pyrolysis and oxidation behaviour of 1/3 coking coal. <italic>J Therm Anal Calorim</italic>, 2017, 129(3): 1779 doi: 10.1007/s10973-017-6331-3 [33] Zhao J Y, Deng J, Chen L, et al. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. <italic>Energy</italic>, 2019, 181: 136 doi: 10.1016/j.energy.2019.05.158 -