<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

材料輻照損傷中的點缺陷團簇與一維遷移現象

萬發榮

萬發榮. 材料輻照損傷中的點缺陷團簇與一維遷移現象[J]. 工程科學學報, 2020, 42(12): 1535-1541. doi: 10.13374/j.issn2095-9389.2020.02.05.001
引用本文: 萬發榮. 材料輻照損傷中的點缺陷團簇與一維遷移現象[J]. 工程科學學報, 2020, 42(12): 1535-1541. doi: 10.13374/j.issn2095-9389.2020.02.05.001
WAN Fa-rong. Clusters of point defects and one-dimensional motion of clusters during irradiation damage in materials[J]. Chinese Journal of Engineering, 2020, 42(12): 1535-1541. doi: 10.13374/j.issn2095-9389.2020.02.05.001
Citation: WAN Fa-rong. Clusters of point defects and one-dimensional motion of clusters during irradiation damage in materials[J]. Chinese Journal of Engineering, 2020, 42(12): 1535-1541. doi: 10.13374/j.issn2095-9389.2020.02.05.001

材料輻照損傷中的點缺陷團簇與一維遷移現象

doi: 10.13374/j.issn2095-9389.2020.02.05.001
基金項目: 國家自然科學基金資助項目(11875085,51471026);國家磁約束核聚變能發展研究專項(ITER計劃國內專項)資助項目(2014GB120000)
詳細信息
    通訊作者:

    E-mail:wanfr@mater.ustb.edu.cn

  • 中圖分類號: TG111.2

Clusters of point defects and one-dimensional motion of clusters during irradiation damage in materials

More Information
  • 摘要: 材料輻照損傷是核反應堆材料、尤其是核聚變堆材料所面臨的重要問題。高能粒子(中子、離子、電子)輻照在材料中會產生大量的點缺陷,即自間隙原子和空位。這些點缺陷聚集在一起會形成自間隙原子團簇和空位團簇,從而對材料結構和性能的演化產生重要影響。空位團簇包括有空洞、層錯四面體、空位型位錯環,而自間隙原子團簇則只有自間隙型位錯環。本文介紹了兩種點缺陷團簇的性質、及其對于以材料輻照腫脹為主要內容的材料輻照損傷性能的影響。作為空位團簇,比較詳細介紹了具有本課題組特色的空位型位錯環的研究,同時分析了合金元素和氫同位素對空位型位錯環的影響。在鐵試樣中形成的這種空位型位錯環尺寸可達100 nm左右,該空位型位錯環具有兩種柏氏矢量, b =<100> 和 b =1/2<111>,前者的數密度比后者高一個數量級。對于自間隙原子團簇,則重點介紹了與其相關的一維遷移現象及其研究動態,該一維遷移性能有可能是影響高熵合金輻照性能的重要因素。

     

  • 圖  1  電子束輻照時的位錯環變化

    Figure  1.  Change of dislocation loops under electron irradiation

    圖  2  級聯過程中的自間隙原子團簇的一維遷移

    Figure  2.  One-dimensional motion of self-interstitial atom clusters during the cascade process

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Was G S. Fundamentals of Radiation Materials Science-Metals and Alloys. 2nd Ed. New York: Springer Science+Business Media, 2017
    [2] Ishino S. Irradiation Damage. Tokyo: University of Tokyo Press, 1979
    [3] Wan F R. Irradiation Damage in Metals. Beijing: Science Press, 1993

    萬發榮. 金屬材料的輻照損傷. 北京: 科學出版社, 1993
    [4] Guo L P, Luo F F, Yu Y X. Dislocation Loops in Irradiated Nuclear Materials. Beijing: National Defense Industry Press, 2017

    郭立平, 羅鳳鳳, 于雁霞. 核材料輻照位錯環. 北京: 國防工業出版社, 2017
    [5] Nordlund K. Historical review of computer simulation of radiation effects in materials. J Nucl Mater, 2019, 520: 273 doi: 10.1016/j.jnucmat.2019.04.028
    [6] Ipatova I, Wady P T, Shubeita S M, et al. Radiation-induced void formation and ordering in Ta-W alloys. J Nucl Mater, 2017, 495: 343 doi: 10.1016/j.jnucmat.2017.08.029
    [7] Zinkle S J, Snead L L. Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations. Scripta Mater, 2018, 143: 154 doi: 10.1016/j.scriptamat.2017.06.041
    [8] Saka H. Dislocation in Crystals. Tokyo: Muruzen Press, 2015
    [9] Schibli R, Sch?ublin R. On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels–a literature review. J Nucl Mater, 2013, 442: S761 doi: 10.1016/j.jnucmat.2013.05.077
    [10] Loretto M H, Phillips P J, Mills M J. Stacking fault tetrahedra in metals. Scripta Mater, 2015, 94: 1 doi: 10.1016/j.scriptamat.2014.07.020
    [11] Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: damage production and microstructural evolution. Acta Mater, 2016, 112: 105 doi: 10.1016/j.actamat.2016.03.051
    [12] Huang Y N, Wan F R, Jiao Z J. The type identification of dislocation loops by TEM and the loop formation in pure Fe implanted with H+. Acta Phys Sin, 2011, 60(3): 036802-1 doi: 10.7498/aps.60.036802

    黃依娜, 萬發榮, 焦治杰. 利用透射電鏡襯度像變化判定位錯環類型及注氫純鐵中形成的位錯環分析. 物理學報, 2011, 60(3):036802-1 doi: 10.7498/aps.60.036802
    [13] Du Y F, Cui L J, Han W T, et al. Formation of vacancy-type dislocation loops in hydrogen-ion-implanted Fe–Cr alloy. Acta Metall Sin Engl Lett, 2019, 32(5): 566 doi: 10.1007/s40195-018-0807-4
    [14] Liu P P, Zhu Y M, Zhao M Z, et al. The effect of isotope on the dynamic behavior of <100> vacancy-type dislocation loop in deuterium-implanted Fe. Fusion Eng Des, 2015, 95: 20 doi: 10.1016/j.fusengdes.2015.04.017
    [15] Jiang S N, Wan F R, Long Y, et al. Effects of helium and deuterium on irradiation damage in pure iron. Acta Phys Sin, 2013, 62(16): 166801-1 doi: 10.7498/aps.62.166801

    姜少寧, 萬發榮, 龍毅, 等. 氦、氘對純鐵輻照缺陷的影響. 物理學報, 2013, 62(16):166801-1 doi: 10.7498/aps.62.166801
    [16] Huang Y N, Wan F R, Xiao X, et al. The effect of isotope on the interaction between hydrogen and irradiation defect in pure iron. Fusion Eng Des, 2010, 85(10-12): 2203 doi: 10.1016/j.fusengdes.2010.08.030
    [17] Jiang S N, Wan F R, Long Y, et al. Effect of isotope on irradiation damage in pure iron. J Funct Mater, 2013, 44(2): 262 doi: 10.3969/j.issn.1001-9731.2013.02.025

    姜少寧, 萬發榮, 龍毅, 等. 同位素效應對鐵中輻照損傷的影響. 功能材料, 2013, 44(2):262 doi: 10.3969/j.issn.1001-9731.2013.02.025
    [18] Wan F R, Zhan Q, Long Y, et al. The behavior of vacancy-type dislocation loops under electron irradiation in iron. J Nucl Mater, 2014, 455(1-3): 253 doi: 10.1016/j.jnucmat.2014.05.048
    [19] Konobeev Y V, Dvoriashin A M, Porollo S I, et al. Swelling and microstructure of pure Fe and Fe–Cr alloys after neutron irradiation to ~26 dpa at 400 ℃. J Nucl Mater, 2006, 355(1-3): 124 doi: 10.1016/j.jnucmat.2006.04.011
    [20] Lavrentiev M Y, Nguyen-Manh D, Dudarev S L. Chromium-vacancy clusters in dilute bcc Fe–Cr alloys: an ab initio study. J Nucl Mater, 2018, 499: 613 doi: 10.1016/j.jnucmat.2017.10.038
    [21] Yao Z, Hernandez-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: damage evolution in thin-foils at lower doses. Philos Mag, 2008, 88(21): 2851 doi: 10.1080/14786430802380469
    [22] Zhang G W, Wan F R, Jiang S N, et al. Effect of hydrogen implantation at high temperature on the microstructural evolution of vanadium alloys. Chin J Eng, 2016, 38(3): 385

    張高偉, 萬發榮, 姜少寧, 等. 高溫注氫對釩合金微觀結構的影響. 工程科學學報, 2016, 38(3):385
    [23] Cui L J, Gao J, Du Y F, et al. Characterization of dislocation loops in hydrogen-ion irradiated vanadium. Acta Phys Sin, 2016, 65(6): 066102-1 doi: 10.7498/aps.65.066102

    崔麗娟, 高進, 杜玉峰, 等. 氫離子輻照純釩中形成的位錯環. 物理學報, 2016, 65(6):066102-1 doi: 10.7498/aps.65.066102
    [24] Wirth B D. How does radiation damage materials. Science, 2007, 318(5852): 923 doi: 10.1126/science.1150394
    [25] Ishino S, Kuramoto E, Soneda N. Radiation damage on fusion reactor materials 3. displacement of atoms and radiation induced defects. J Plasma Fusion Res, 2008, 84(5): 258
    [26] Arakawa K, Ono K, Isshiki M, et al. Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science, 2007, 318(5852): 956 doi: 10.1126/science.1145386
    [27] Derlet P M, Gilbert M R, Dudarev S L. Simulating dislocation loop internal dynamics and collective diffusion using stochastic differential equations. Phys Rev B, 2011, 84(13): 134109 doi: 10.1103/PhysRevB.84.134109
    [28] Li Y, Boleininger M, Robertson C, et al. Diffusion and interaction of prismatic dislocation loops simulated by stochastic discrete dislocation dynamics. Phys Rev Mater, 2019, 3(7): 073805 doi: 10.1103/PhysRevMaterials.3.073805
    [29] Kuramoto E. Computer simulation of fundamental behaviors of interstitial clusters in Fe and Ni. J Nucl Mater, 2000, 276(1-3): 143 doi: 10.1016/S0022-3115(99)00174-9
    [30] Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun, 2016, 7: 13564 doi: 10.1038/ncomms13564
    [31] Lu C Y, Yang T N, Niu L L, et al. Interstitial migration behavior and defect in ion irradiated pure nickel and Ni?xFe binary alloys. J Nucl Mater, 2018, 509: 237 doi: 10.1016/j.jnucmat.2018.07.006
    [32] Shi S, Bei H B, Robertson I M. Impact of alloy composition on one-dimensional glide of small dislocation loops in concentrated solid solution alloys. Mater Sci Eng A, 2017, 700: 617 doi: 10.1016/j.msea.2017.05.049
    [33] Amino T, Arakawa K, Mori H. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy. Sci Rep, 2016, 6: 26099 doi: 10.1038/srep26099
    [34] Satoh Y, Matsui H, Hamaoka T. Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation. Phys Rev B, 2008, 77(9): 094135 doi: 10.1103/PhysRevB.77.094135
    [35] Hamaoka T, Satoh Y, Matsui H. One-dimensional motion of interstitial clusters in iron-based binary alloys observed using a high-voltage electron microscope. J Nucl Mater, 2013, 433(11-3): 180
    [36] Hayashi T, Fukumuto K, Matsui H. In situ observation of glide motions of SIA-type loops in vanadium and V–5Ti under HVEM irradiation. J Nucl Mater, 2002, 307-311: 993 doi: 10.1016/S0022-3115(02)01105-4
    [37] Satoh Y, Abe Y, Abe H, et al. Vacancy effects on one-dimensional migration of interstitial clusters in iron under electron irradiation at low temperatures. Philos Mag, 2016, 96: 2219 doi: 10.1080/14786435.2016.1194533
    [38] Williams D B, Carter C B. Transmission Electron Microscopy. 2nd Ed. New York: Springer, 2009
    [39] Li J, Gao J, Wan F R. The change of microstructure in deuteron-implanted aluminum under electron irradiation. Acta Phys Sin, 2016, 65(2): 026102-1 doi: 10.7498/aps.65.026102

    李杰, 高進, 萬發榮. 電子束輻照下的注氘鋁的結構變化. 物理學報, 2016, 65(2):026102-1 doi: 10.7498/aps.65.026102
    [40] Huang M J, Li Y P, Ran G, et al. Cr coated Zr-4 alloy prepared by electroplating and its in-situ He+ irradiation behavior. J Nucl Mater, 2020, 538: 152240 doi: 10.1016/j.jnucmat.2020.152240
    [41] Matsukawa Y, Zinkle S J. One-dimensional fast migration of vacancy clusters in metals. Science, 2007, 318(5852): 959 doi: 10.1126/science.1148336
  • 加載中
圖(2)
計量
  • 文章訪問數:  2857
  • HTML全文瀏覽量:  1392
  • PDF下載量:  227
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-02
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回