Migration behavior of alkali metals in an iron ore sintering process with the substitution of biomass for coke breeze
-
摘要: 通過揮發–冷凝實驗裝置進行小型燒結實驗,運用X射線熒光光譜(XRF)、掃描電鏡–能譜儀(SEM–EDS)及電感耦合等離子體發射光譜儀(ICP–OES)等分析檢測手段,結合Factsage熱力學模擬,對比研究了以木炭和焦粉為燃料,配加含鐵粉塵的鐵礦石燒結過程中,床層堿金屬隨煙氣揮發遷移的規律、燒結前后的堿金屬脫除率以及工藝措施對堿金屬脫除的影響。結果表明,K相對于Na更容易被脫除,揮發至煙氣中的堿金屬化合物主要是KCl,其次為NaCl。增加燃料配比促進了堿金屬元素的脫除;在燃料配比相同的條件下,木炭燒結的堿金屬脫除效果不及焦粉燒結。燒結過程中,排入廢氣中的堿金屬化合物被下部混合料層大量捕獲、吸附,下部床層內捕集的堿金屬氯化物促進了堿金屬的氯化脫除。添加CaCl2后,以木炭為燃料時K和Na的脫除率高于焦粉工況,且產物中K和Na的含量較低。配合氯化脫除工藝將生物質應用于鐵礦石燒結是燒結生產發展的可行方向。Abstract: Iron ore sintering is a process in which iron ore powder, flux, iron-bearing dust, solid fuel (such as coke powder), and return fines are mixed in a certain proportion, granulated, and then processed into agglomerates by high-temperature generated by solid-fuel combustion, which is an important process prior to blast furnace ironmaking. The iron ore sintering process is an important emitter of atmospheric particles in which alkali metal elements in a sinter bed contribute to the formation of fine particles during combustion, aggravating particulate emissions. Using biomass materials such as charcoal to replace coke in the sintering process can significantly alleviate the emission of both greenhouse gases and pollutants. However, owing to the high content of alkali metals in biomass and their poor combustion characteristics, alkali-metal-related problems inevitably arise. In this study, a small sintering experiment was conducted in a volatilization condensation test facility and analyses were performed based on data obtained by X-ray fluorescence spectroscopy, scanning electron microscopy energy dispersive spectrometer, and inductively coupled plasma-atomic emission spectrometry followed by thermodynamic simulation. The purpose of these analyses was to investigate the laws associated with alkali metal migration and enrichment, removal rate of alkali metal elements, and influence of technological measures on removal process in iron ore sintering using charcoal and coke as fuel with iron-bearing dust added. The results show that K is easier to remove than Na, and the alkali compounds volatilized into a flue gas mainly contain KCl with small amount of NaCl. With the same fuel mass fraction the removal rate of alkali metal in the sintering process using charcoal as fuel is less than that using coke. As the alkali metal compounds in the downstream flue gas migrate, they collide with the raw material particles because of the inertial effect. In addition, owing to the low temperature of the raw materials in the low bed, alkali metal compounds tend to condense and deposit on the particles’ surface. During the sintering process, a large number of alkali metal compounds discharged into the waste gas are trapped and absorbed by the low bed, and the alkali metal chloride accumulated in the low bed promotes the removal of chloride from the alkali metal. With the addition of CaCl2, the removal rate of K and Na when using charcoal as fuel is higher than that using coke. Accordingly, the content of K and Na in sintering products with charcoal as fuel is lower than that using coke. The use of biomass as fuel in iron ore sintering in combination with chlorine removal process is feasible and has good prospects.
-
Key words:
- iron ore sintering /
- biomass /
- alkali metal /
- removal /
- enrichment characteristics /
- occurrence state
-
圖 2 堿金屬揮發–冷凝試驗臺
Figure 2. Experimental system for evaporation and condensation of alkali metal vapors
1—Thermocouple; 2—Hand lift; 3—Electric heating wire; 4—Corundum porcelain boat; 5—High temperature pad; 6—Corundum crucible; 7—Electric furnace control cabinet; 8—Thermocouple; 9—Collecting substrate; 10—Flowmeter; 11—Air compressor; 12—Temperature displayer; 13—Condensation collection system
表 1 燒結原料的化學組成(質量分數)
Table 1. Chemical composition of raw materials (mass fraction)
% Raw material TFe CaO SiO2 Al2O3 MgO K2O Na2O Cl LOI Yandi 58.07 0.08 5.09 1.26 0.07 0.02 0.005 0.008 10.20 Iron-bearing dust 41.59 10.28 4.90 2.07 2.68 2.80 0.32 1.19 19.94 Limestone 0.36 53.40 2.23 0.98 0.48 0.09 0 0 42.73 Dolomite 0.35 31.45 2.26 0.58 19.45 0.08 0.03 0.02 45.50 Coke 1.07 0.62 6.11 4.32 0.04 0.08 0.01 0 86.85 Charcoal 0.20 3.02 0.14 0.06 0.43 0.19 0.13 0.01 94.50 Note: TFe is total Fe, LOI is loss on ignition. 表 2 焦粉和木炭的工業分析與元素分析(質量分數)
Table 2. Proximate analysis and ultimate analysis of coke and charcoal (mass fraction)
% Sample Proximate analysis Ultimate analysis M A V FC C H N S O Coke 0.34 20.42 5.20 74.04 85.48 0.31 1.13 0.62 2.67 Charcoal 8.94 4.36 15.53 71.17 77.00 2.39 0.47 0.21 6.63 Note: M is moisture, A is ash, V is volatile matter, FC is fixed carbon. 表 3 實驗工況表
Table 3. Experimental conditions
Variable Mass fraction of fuel/% Mass fraction of iron-bearing dust/% Mass fraction of
additive/%Evaporation temperature/℃ Collection temperature/℃ Charcoal 4, 4.5, 5, 5.5, 6 5 — 1300 350 Coke 4, 4.5, 5, 5.5, 6 5 — 1300 350 Collection temperature 5 5 — 1300 250, 300, 350, 400 CaCl2 5 5 0.65, 1.30 1300 350 NaCl 5 5 0.6 1300 350 259luxu-164 -
參考文獻
[1] Fan X H, Ji Z Y, Gan M, et al. Participating patterns of trace elements in PM2.5 formation during iron ore sintering process. Ironmaking Steelmaking, 2018, 45(3): 288 doi: 10.1080/03019233.2016.1262575 [2] Gan M, Ji Z Y, Fan X H, et al. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process. J Hazard Mater, 2018, 353: 381 doi: 10.1016/j.jhazmat.2018.04.032 [3] Ji Z Y, Gan M, Fan X H, et al. Characteristics of PM2.5 from iron ore sintering process: Influences of raw materials and controlling methods. J Cleaner Prod, 2017, 148: 12 doi: 10.1016/j.jclepro.2017.01.103 [4] Lau L L, de Castro L F A, Dutra F D C, et al. Characterization and mass balance of trace elements in an iron ore sinter plant. J Mater Res Technol, 2016, 5(2): 144 doi: 10.1016/j.jmrt.2015.10.007 [5] Ji Z Y, Fan X H, Gan M, et al. Influence factors on PM2.5 and PM10 emissions in iron ore sintering process. ISIJ Int, 2016, 56(9): 1580 doi: 10.2355/isijinternational.ISIJINT-2016-169 [6] Fan X H, Gan M, Ji Z Y, et al. The rules of super fine particulate emission from sintering flue gas and its physicochemical properties. Sintering Pelletizing, 2016, 41(3): 42范曉慧, 甘敏, 季志云, 等. 燒結煙氣超細顆粒物排放規律及其物化特性. 燒結球團, 2016, 41(3):42 [7] Yan B J, Xing Y, Lu P. et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767 [8] Ma P N, Cheng M, Zhou M X, et al. Combustion characteristics of different types of quasi-particles in iron ore sintering process. Chin J Eng, 2019, 41(3): 316馬鵬楠, 程明, 周明熙, 等. 鐵礦石燒結過程中不同類型準顆粒的燃燒特性. 工程科學學報, 2019, 41(3):316 [9] Ji Z Y, Fan X H, Gan M, et al. Speciation of PM2.5 released from iron ore sintering process and calculation of elemental equilibrium. ISIJ Int, 2017, 57(4): 673 doi: 10.2355/isijinternational.ISIJINT-2016-650 [10] Fan X H, He X N, Gan M, et al. Behavior of alkali metal removal and enrichment in particles during sintering process. J Cent South Univ Sci Technol, 2017, 48(11): 2843 doi: 10.11817/j.issn.1672-7207.2017.11.031范曉慧, 何向寧, 甘敏, 等. 燒結過程中堿金屬脫除及在顆粒物中的富集行為. 中南大學學報(自然科學版), 2017, 48(11):2843 doi: 10.11817/j.issn.1672-7207.2017.11.031 [11] Fan X H, Wang Y N, Gan M, et al. Thermodynamic analysis and reaction behaviors of alkali metal elements during iron ore sintering. J Iron Steel Res Int, 2019, 26(6): 558 doi: 10.1007/s42243-018-0077-4 [12] Katsuaki K, Qiu S. Characteristics of alkali metals in iron ore sintering process. Sintering Pelletizing, 1982(2): 72Katsuaki Kobayashi, 邱碩. 堿金屬在燒結過程中的特性. 燒結球團, 1982(2):72 [13] Ma Y S. Experimental study on the removal of alkali metals by chlorination sintering. Sintering Pelletizing, 1983(6): 30馬燕生. 氯化燒結脫除堿金屬的試驗研究. 燒結球團, 1983(6):30 [14] Wang Y B, Tan H Z, Wang X B, et al. The condensation and thermodynamic characteristics of alkali compound vapors on wall during wheat straw combustion. Fuel, 2017, 187: 33 doi: 10.1016/j.fuel.2016.09.014 [15] Wang Y B, Wang X B, Tan H Z, et al. Condensation behaviors of alkali salt vapors in biomass combustion. J Combust Sci Technol, 2015, 21(5): 435王毅斌, 王學斌, 譚厚章, 等. 生物質燃燒過程中堿金屬的結晶行為. 燃燒科學與技術, 2015, 21(5):435 [16] Wang X B, Xu Z X, Wei B, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing. Appl Therm Eng, 2015, 80: 150 doi: 10.1016/j.applthermaleng.2015.01.051 [17] Li G Y, Wang C A, Yan Y, et al. Release and transformation of sodium during combustion of Zhundong coals. J Energy Inst, 2016, 89(1): 48 doi: 10.1016/j.joei.2015.01.011 [18] Wang C A, Jin X, Wang Y K, et al. Release and transformation of sodium during pyrolysis of Zhundong coals. Energy Fuels, 2015, 29(1): 78 doi: 10.1021/ef502128s [19] Liu J, Wang Z H, Xiang F P, et al. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion. J Fuel Chem Technol, 2014, 42(3): 316劉敬, 王智化, 項飛鵬, 等. 準東煤中堿金屬的賦存形式及其在燃燒過程中的遷移規律實驗研究. 燃料化學學報, 2014, 42(3):316 [20] Deng L, Ye J M, Jin X, et al. Transformation and release of potassium during fixed-bed pyrolysis of biomass. J Energy Inst, 2018, 91(4): 630 doi: 10.1016/j.joei.2017.02.009 [21] Liu Y Q, Cheng L M, Zhao Y G, et al. Transformation behavior of alkali metals in high-alkali coals. Fuel Process Technol, 2018, 169: 288 doi: 10.1016/j.fuproc.2017.09.013 [22] Li R D, Kai X P, Yang T H, et al. Release and transformation of alkali metals during co-combustion of coal and sulfur-rich wheat straw. Energy Convers Manage, 2014, 83: 197 doi: 10.1016/j.enconman.2014.02.059 [23] Lu L M, Adam M, Kilburn M, et al. Substitution of charcoal for coke breeze in iron ore sintering. ISIJ Int, 2013, 53(9): 1607 doi: 10.2355/isijinternational.53.1607 [24] Cheng Z L, Yang J, Zhou L, et al. Characteristics of charcoal combustion and its effects on iron-ore sintering performance. Appl Energy, 2016, 161: 364 doi: 10.1016/j.apenergy.2015.09.095 [25] Cheng Z L, Yang J, Zhou L, et al. Study on replacement of coke with charcoal and methane in iron ore sintering. J Eng Thermophys, 2017, 38(1): 188程志龍, 楊劍, 周浪, 等. 鐵礦燒結中木炭及燃氣替代焦粉的研究. 工程熱物理學報, 2017, 38(1):188 [26] Fan X H, Ji Z Y, Gan M, et al. Application of biomass fuel in iron ore sintering. J Cent South Univ Sci Technol, 2013, 44(5): 1747范曉慧, 季志云, 甘敏, 等. 生物質燃料應用于鐵礦石燒結的研究. 中南大學學報(自然科學版), 2013, 44(5):1747 [27] Zhao J P, Loo C E, Dukino R D. Modelling fuel combustion in iron ore sintering. Combust Flame, 2015, 162(4): 1019 doi: 10.1016/j.combustflame.2014.09.026 -