<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

生物質替代焦粉鐵礦石燒結過程中的堿金屬遷移行為

周昊 邢裕健 周明熙 馬鵬楠

周昊, 邢裕健, 周明熙, 馬鵬楠. 生物質替代焦粉鐵礦石燒結過程中的堿金屬遷移行為[J]. 工程科學學報, 2021, 43(3): 376-384. doi: 10.13374/j.issn2095-9389.2020.01.20.002
引用本文: 周昊, 邢裕健, 周明熙, 馬鵬楠. 生物質替代焦粉鐵礦石燒結過程中的堿金屬遷移行為[J]. 工程科學學報, 2021, 43(3): 376-384. doi: 10.13374/j.issn2095-9389.2020.01.20.002
ZHOU Hao, XING Yu-jian, ZHOU Ming-xi, MA Peng-nan. Migration behavior of alkali metals in an iron ore sintering process with the substitution of biomass for coke breeze[J]. Chinese Journal of Engineering, 2021, 43(3): 376-384. doi: 10.13374/j.issn2095-9389.2020.01.20.002
Citation: ZHOU Hao, XING Yu-jian, ZHOU Ming-xi, MA Peng-nan. Migration behavior of alkali metals in an iron ore sintering process with the substitution of biomass for coke breeze[J]. Chinese Journal of Engineering, 2021, 43(3): 376-384. doi: 10.13374/j.issn2095-9389.2020.01.20.002

生物質替代焦粉鐵礦石燒結過程中的堿金屬遷移行為

doi: 10.13374/j.issn2095-9389.2020.01.20.002
基金項目: 國家自然科學基金資助項目(52036008)
詳細信息
    通訊作者:

    E-mail: zhouhao@zju.edu.cn

  • 中圖分類號: TF046. 4

Migration behavior of alkali metals in an iron ore sintering process with the substitution of biomass for coke breeze

More Information
  • 摘要: 通過揮發–冷凝實驗裝置進行小型燒結實驗,運用X射線熒光光譜(XRF)、掃描電鏡–能譜儀(SEM–EDS)及電感耦合等離子體發射光譜儀(ICP–OES)等分析檢測手段,結合Factsage熱力學模擬,對比研究了以木炭和焦粉為燃料,配加含鐵粉塵的鐵礦石燒結過程中,床層堿金屬隨煙氣揮發遷移的規律、燒結前后的堿金屬脫除率以及工藝措施對堿金屬脫除的影響。結果表明,K相對于Na更容易被脫除,揮發至煙氣中的堿金屬化合物主要是KCl,其次為NaCl。增加燃料配比促進了堿金屬元素的脫除;在燃料配比相同的條件下,木炭燒結的堿金屬脫除效果不及焦粉燒結。燒結過程中,排入廢氣中的堿金屬化合物被下部混合料層大量捕獲、吸附,下部床層內捕集的堿金屬氯化物促進了堿金屬的氯化脫除。添加CaCl2后,以木炭為燃料時K和Na的脫除率高于焦粉工況,且產物中K和Na的含量較低。配合氯化脫除工藝將生物質應用于鐵礦石燒結是燒結生產發展的可行方向。

     

  • 圖  1  焦粉與木炭的微觀形態。(a)焦粉;(b)木炭

    Figure  1.  Micro morphology of coke and charcoal: (a) coke; (b) charcoal

    圖  2  堿金屬揮發–冷凝試驗臺

    Figure  2.  Experimental system for evaporation and condensation of alkali metal vapors

    1—Thermocouple; 2—Hand lift; 3—Electric heating wire; 4—Corundum porcelain boat; 5—High temperature pad; 6—Corundum crucible; 7—Electric furnace control cabinet; 8—Thermocouple; 9—Collecting substrate; 10—Flowmeter; 11—Air compressor; 12—Temperature displayer; 13—Condensation collection system

    圖  3  燒結床火焰鋒面傳播的一維示意圖

    Figure  3.  One dimensional diagram of flame front propagation in sintering bed

    圖  4  木炭質量分數對基片表面凝結顆粒的形態和摩爾組成的影響。(a)4%;(b)4.5%;(c)5%;(d)5.5%

    Figure  4.  Effect of charcoal mass fraction on micro-morphology and mole composition of deposits on probe surface: (a) 4%; (b) 4.5%; (c) 5%; (d) 5.5%

    圖  5  基片表面凝結顆粒的EDS面掃描結果(木炭質量分數為5%,3200倍)

    Figure  5.  EDS mapping of deposits on probe surface (Mass fraction of charcoal is 5%, 3200 times)

    圖  6  焦粉質量分數對基片表面凝結顆粒形態和摩爾組成的影響。(a)4%;(b)4.5%;(c)5%;(d)5.5%

    Figure  6.  Effect of coke mass fraction on micro-morphology and mole composition of deposits on probe surface: (a) 4%; (b) 4.5%; (c) 5%; (d) 5.5%

    圖  7  堿金屬氯化物的形成反應

    Figure  7.  Formation reaction of alkali metal chloride

    圖  8  燃料種類及質量分數對K和Na脫除行為的影響。(a)焦粉;(b)木炭

    Figure  8.  Effect of fuel type and mass fraction on removal behavior of K and Na: (a) coke; (b) charcoal

    圖  9  冷凝溫度對基片表面凝結顆粒形態和摩爾組成的影響。(a)250 ℃;(b)300 ℃;(c)350 ℃;(d) 400 ℃

    Figure  9.  Effect of surface tempetature on micro-morphology and mole composition of deposits on probe surface: (a) 250 ℃; (b) 300 ℃; (c) 350 ℃; (d) 400 ℃

    圖  10  摻入NaCl后基片表面顆粒形態和組成(2000倍)

    Figure  10.  SEM–EDS mapping of deposits on probe surface with NaCl added (2000 times)

    圖  11  CaCl2添加劑對K和Na脫除行為的影響。(a)焦粉;(b)木炭

    Figure  11.  Effect of CaCl2 additive on removal behavior of K and Na: (a) coke; (b) charcoal

    圖  12  堿金屬硅酸鹽和鋁硅酸鹽的氯化反應。(a)硅酸鹽;(b)鋁硅酸鹽

    Figure  12.  Chlorination reactions of alkali metal silicate and aluminosilicate: (a) silicate; (b) aluminosilicate

    表  1  燒結原料的化學組成(質量分數)

    Table  1.   Chemical composition of raw materials (mass fraction) %

    Raw materialTFeCaOSiO2Al2O3MgOK2ONa2OClLOI
    Yandi58.070.085.091.260.070.020.0050.00810.20
    Iron-bearing dust41.5910.284.902.072.682.800.321.1919.94
    Limestone0.3653.402.230.980.480.090042.73
    Dolomite0.3531.452.260.5819.450.080.030.0245.50
    Coke1.070.626.114.320.040.080.01086.85
    Charcoal0.203.020.140.060.430.190.130.0194.50
    Note: TFe is total Fe, LOI is loss on ignition.
    下載: 導出CSV

    表  2  焦粉和木炭的工業分析與元素分析(質量分數)

    Table  2.   Proximate analysis and ultimate analysis of coke and charcoal (mass fraction) %

    SampleProximate analysisUltimate analysis
    MAVFCCHNSO
    Coke0.3420.425.2074.0485.480.311.130.622.67
    Charcoal8.944.3615.5371.1777.002.390.470.216.63
    Note: M is moisture, A is ash, V is volatile matter, FC is fixed carbon.
    下載: 導出CSV

    表  3  實驗工況表

    Table  3.   Experimental conditions

    VariableMass fraction of fuel/%Mass fraction of iron-bearing dust/%Mass fraction of
    additive/%
    Evaporation temperature/℃Collection temperature/℃
    Charcoal4, 4.5, 5, 5.5, 651300350
    Coke4, 4.5, 5, 5.5, 651300350
    Collection temperature551300250, 300, 350, 400
    CaCl2550.65, 1.301300350
    NaCl550.61300350
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Fan X H, Ji Z Y, Gan M, et al. Participating patterns of trace elements in PM2.5 formation during iron ore sintering process. Ironmaking Steelmaking, 2018, 45(3): 288 doi: 10.1080/03019233.2016.1262575
    [2] Gan M, Ji Z Y, Fan X H, et al. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process. J Hazard Mater, 2018, 353: 381 doi: 10.1016/j.jhazmat.2018.04.032
    [3] Ji Z Y, Gan M, Fan X H, et al. Characteristics of PM2.5 from iron ore sintering process: Influences of raw materials and controlling methods. J Cleaner Prod, 2017, 148: 12 doi: 10.1016/j.jclepro.2017.01.103
    [4] Lau L L, de Castro L F A, Dutra F D C, et al. Characterization and mass balance of trace elements in an iron ore sinter plant. J Mater Res Technol, 2016, 5(2): 144 doi: 10.1016/j.jmrt.2015.10.007
    [5] Ji Z Y, Fan X H, Gan M, et al. Influence factors on PM2.5 and PM10 emissions in iron ore sintering process. ISIJ Int, 2016, 56(9): 1580 doi: 10.2355/isijinternational.ISIJINT-2016-169
    [6] Fan X H, Gan M, Ji Z Y, et al. The rules of super fine particulate emission from sintering flue gas and its physicochemical properties. Sintering Pelletizing, 2016, 41(3): 42

    范曉慧, 甘敏, 季志云, 等. 燒結煙氣超細顆粒物排放規律及其物化特性. 燒結球團, 2016, 41(3):42
    [7] Yan B J, Xing Y, Lu P. et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767

    閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767
    [8] Ma P N, Cheng M, Zhou M X, et al. Combustion characteristics of different types of quasi-particles in iron ore sintering process. Chin J Eng, 2019, 41(3): 316

    馬鵬楠, 程明, 周明熙, 等. 鐵礦石燒結過程中不同類型準顆粒的燃燒特性. 工程科學學報, 2019, 41(3):316
    [9] Ji Z Y, Fan X H, Gan M, et al. Speciation of PM2.5 released from iron ore sintering process and calculation of elemental equilibrium. ISIJ Int, 2017, 57(4): 673 doi: 10.2355/isijinternational.ISIJINT-2016-650
    [10] Fan X H, He X N, Gan M, et al. Behavior of alkali metal removal and enrichment in particles during sintering process. J Cent South Univ Sci Technol, 2017, 48(11): 2843 doi: 10.11817/j.issn.1672-7207.2017.11.031

    范曉慧, 何向寧, 甘敏, 等. 燒結過程中堿金屬脫除及在顆粒物中的富集行為. 中南大學學報(自然科學版), 2017, 48(11):2843 doi: 10.11817/j.issn.1672-7207.2017.11.031
    [11] Fan X H, Wang Y N, Gan M, et al. Thermodynamic analysis and reaction behaviors of alkali metal elements during iron ore sintering. J Iron Steel Res Int, 2019, 26(6): 558 doi: 10.1007/s42243-018-0077-4
    [12] Katsuaki K, Qiu S. Characteristics of alkali metals in iron ore sintering process. Sintering Pelletizing, 1982(2): 72

    Katsuaki Kobayashi, 邱碩. 堿金屬在燒結過程中的特性. 燒結球團, 1982(2):72
    [13] Ma Y S. Experimental study on the removal of alkali metals by chlorination sintering. Sintering Pelletizing, 1983(6): 30

    馬燕生. 氯化燒結脫除堿金屬的試驗研究. 燒結球團, 1983(6):30
    [14] Wang Y B, Tan H Z, Wang X B, et al. The condensation and thermodynamic characteristics of alkali compound vapors on wall during wheat straw combustion. Fuel, 2017, 187: 33 doi: 10.1016/j.fuel.2016.09.014
    [15] Wang Y B, Wang X B, Tan H Z, et al. Condensation behaviors of alkali salt vapors in biomass combustion. J Combust Sci Technol, 2015, 21(5): 435

    王毅斌, 王學斌, 譚厚章, 等. 生物質燃燒過程中堿金屬的結晶行為. 燃燒科學與技術, 2015, 21(5):435
    [16] Wang X B, Xu Z X, Wei B, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing. Appl Therm Eng, 2015, 80: 150 doi: 10.1016/j.applthermaleng.2015.01.051
    [17] Li G Y, Wang C A, Yan Y, et al. Release and transformation of sodium during combustion of Zhundong coals. J Energy Inst, 2016, 89(1): 48 doi: 10.1016/j.joei.2015.01.011
    [18] Wang C A, Jin X, Wang Y K, et al. Release and transformation of sodium during pyrolysis of Zhundong coals. Energy Fuels, 2015, 29(1): 78 doi: 10.1021/ef502128s
    [19] Liu J, Wang Z H, Xiang F P, et al. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion. J Fuel Chem Technol, 2014, 42(3): 316

    劉敬, 王智化, 項飛鵬, 等. 準東煤中堿金屬的賦存形式及其在燃燒過程中的遷移規律實驗研究. 燃料化學學報, 2014, 42(3):316
    [20] Deng L, Ye J M, Jin X, et al. Transformation and release of potassium during fixed-bed pyrolysis of biomass. J Energy Inst, 2018, 91(4): 630 doi: 10.1016/j.joei.2017.02.009
    [21] Liu Y Q, Cheng L M, Zhao Y G, et al. Transformation behavior of alkali metals in high-alkali coals. Fuel Process Technol, 2018, 169: 288 doi: 10.1016/j.fuproc.2017.09.013
    [22] Li R D, Kai X P, Yang T H, et al. Release and transformation of alkali metals during co-combustion of coal and sulfur-rich wheat straw. Energy Convers Manage, 2014, 83: 197 doi: 10.1016/j.enconman.2014.02.059
    [23] Lu L M, Adam M, Kilburn M, et al. Substitution of charcoal for coke breeze in iron ore sintering. ISIJ Int, 2013, 53(9): 1607 doi: 10.2355/isijinternational.53.1607
    [24] Cheng Z L, Yang J, Zhou L, et al. Characteristics of charcoal combustion and its effects on iron-ore sintering performance. Appl Energy, 2016, 161: 364 doi: 10.1016/j.apenergy.2015.09.095
    [25] Cheng Z L, Yang J, Zhou L, et al. Study on replacement of coke with charcoal and methane in iron ore sintering. J Eng Thermophys, 2017, 38(1): 188

    程志龍, 楊劍, 周浪, 等. 鐵礦燒結中木炭及燃氣替代焦粉的研究. 工程熱物理學報, 2017, 38(1):188
    [26] Fan X H, Ji Z Y, Gan M, et al. Application of biomass fuel in iron ore sintering. J Cent South Univ Sci Technol, 2013, 44(5): 1747

    范曉慧, 季志云, 甘敏, 等. 生物質燃料應用于鐵礦石燒結的研究. 中南大學學報(自然科學版), 2013, 44(5):1747
    [27] Zhao J P, Loo C E, Dukino R D. Modelling fuel combustion in iron ore sintering. Combust Flame, 2015, 162(4): 1019 doi: 10.1016/j.combustflame.2014.09.026
  • 加載中
圖(12) / 表(3)
計量
  • 文章訪問數:  1786
  • HTML全文瀏覽量:  908
  • PDF下載量:  63
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-20
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回