[1] |
Ilankoon I M S K, Tang Y, Ghorbani Y, et al. The current state and future directions of percolation leaching in the Chinese mining industry: Challenges and opportunities. <italic>Miner Eng</italic>, 2018, 125: 206 doi: 10.1016/j.mineng.2018.06.006
|
[2] |
Yin S H, Wang L M, Kabwe E, et al. Copper bioleaching in China: review and prospect. <italic>Minerals</italic>, 2018, 8(2): 32 doi: 10.3390/min8020032
|
[3] |
Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores–a brief overview. <italic>Hydrometallurgy</italic>, 2016, 165: 206 doi: 10.1016/j.hydromet.2015.09.001
|
[4] |
Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. <italic>Chin J Eng</italic>, 2019, 41(2): 143尹升華;王雷鳴;吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143
|
[5] |
Ghorbani Y, Franzidis J P, Petersen J. Heap leaching technology—current state, innovations, and future directions: a review. <italic>Miner Process Extract Metall Rev</italic>, 2016, 37(2): 73
|
[6] |
Miao X X, Wu A X, Yang B H. Recent advances in heap leaching research: Characterisation and modelling. <italic>Chin J Nonferrous Met</italic>, 2018, 28(11): 2327繆秀秀, 吳愛祥, 楊保華. 堆浸水力學研究前沿: 結構表征與模型仿真. 中國有色金屬學報, 2018, 28(11):2327
|
[7] |
Bouffard S C, West-Sells P G. Hydrodynamic behavior of heap leach piles: Influence of testing scale and material properties. <italic>Hydrometallurgy</italic>, 2009, 98(1-2): 136 doi: 10.1016/j.hydromet.2009.04.012
|
[8] |
Wu A X, Wang S Y, Yang B H. Effect of particle structure on permeability of leaching dump. <italic>Min Res Dev</italic>, 2011(5): 22吳愛祥, 王少勇, 楊保華. 堆浸散體顆粒結構對溶浸液滲流規律的影響. 礦業研究與開發, 2011(5):22
|
[9] |
Rong L W, Dong K J, Yu A B. Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: effect of particle size distribution. <italic>Chem Eng Sci</italic>, 2014, 116: 508 doi: 10.1016/j.ces.2014.05.025
|
[10] |
Ilankoon I M S K, Neethling S J. Hysteresis in unsaturated flow in packed beds and heaps. <italic>Miner Eng</italic>, 2012, 35: 1 doi: 10.1016/j.mineng.2012.05.007
|
[11] |
Ding D X, Li G Y, Xu W P, et al. Regularities for saturated water seepage in loose fragmented medium. <italic>Chin J Geotech Eng</italic>, 2010, 32(2): 180丁德馨, 李廣悅, 徐文平, 等. 松散破碎介質中液體飽和滲流規律研究. 巖土工程學報, 2010, 32(2):180
|
[12] |
Ilankoon I M S K, Neethling S J. Liquid spread mechanisms in packed beds and heaps. The separation of length and time scales due to particle porosity. <italic>Miner Eng</italic>, 2016, 86: 130 doi: 10.1016/j.mineng.2015.12.010
|
[13] |
Poisson J, Chouteau M, Aubertin M, et al. Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. <italic>J Appl Geophys</italic>, 2009, 67(2): 179 doi: 10.1016/j.jappgeo.2008.10.011
|
[14] |
Yin S H, Wang L M, Chen X, et al. Effect of ore size and heap porosity on capillary process inside leaching heap. <italic>Trans Nonferrous Met Soc China</italic>, 2016, 26(3): 835 doi: 10.1016/S1003-6326(16)64174-2
|
[15] |
Ye Y J, Ding D X, Li G Y, et al. Regularities for liquid saturated seepage in uranium ore heap for heap leaching. <italic>Rock Soil Mech</italic>, 2013, 34(8): 2243葉勇軍, 丁德馨, 李廣悅, 等. 堆浸鈾礦堆液體飽和滲流規律的研究. 巖土力學, 2013, 34(8):2243
|
[16] |
Dhawan N, Safarzadeh M S, Miller J D, et al. Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. <italic>Miner Eng</italic>, 2012, 35: 75 doi: 10.1016/j.mineng.2012.03.033
|
[17] |
Ye J B, Zhang J F, Zou W L. Influences of grain shape on pore characteristics of filled breakstone aggregate. <italic>Rock Soil Mech</italic>, 2018, 39(12): 4457葉加兵, 張家發, 鄒維列. 顆粒形狀對碎石料孔隙特性影響研究. 巖土力學, 2018, 39(12):4457
|
[18] |
Nosrati A, Skinner W, Robinson D J, et al. Microstructure analysis of Ni laterite agglomerates for enhanced heap leaching. <italic>Powder Technol</italic>, 2012, 232: 106 doi: 10.1016/j.powtec.2012.08.016
|
[19] |
Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. <italic>Earth-Sci Rev</italic>, 2013, 123: 1 doi: 10.1016/j.earscirev.2013.04.003
|
[20] |
Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. <italic>Hydrometallurgy</italic>, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011
|
[21] |
Lin Q, Neethling S J, Courtois L, et al. Multi-scale quantification of leaching performance using X-ray tomography. <italic>Hydrometallurgy</italic>, 2016, 164: 265 doi: 10.1016/j.hydromet.2016.06.020
|
[22] |
Wu A X, Yin S H, Li J F. Influential factors of permeability rule of leaching solution in ion-absorbed rare earth deposits with in situ leaching. <italic>J Cent South Univ Sci Technol</italic>, 2005, 36(3): 506吳愛祥, 尹升華, 李建鋒. 離子型稀土礦原地溶浸溶浸液滲流規律的影響因素. 中南大學學報: 自然科學版, 2005, 36(3):506
|
[23] |
Liu Y F, Zheng D S, Yang B, et al. Microscopic simulation of influence of particle size and gradation on permeability coefficient of soil. <italic>Rock Soil Mech</italic>, 2019, 40(1): 403劉一飛, 鄭東生, 楊兵, 等. 粒徑及級配特性對土體滲透系數影響的細觀模擬. 巖土力學, 2019, 40(1):403
|
[24] |
Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. <italic>Chin J Eng</italic>, 2016, 38(3): 328楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3):328
|
[25] |
Zhang S, Liu W Y, Granata G. Effects of grain size gradation on the porosity of packed heap leach beds. <italic>Hydrometallurgy</italic>, 2018, 179: 238 doi: 10.1016/j.hydromet.2018.06.014
|
[26] |
Raeini A Q, Bijeljic B, Blunt M J. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media. <italic>Phys Rev E</italic>, 2017, 96(1): 013312 doi: 10.1103/PhysRevE.96.013312
|
[27] |
Jiao H Z, Wang S F, Wu A X, et al. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect. <italic>Chin J Eng</italic>, 2019, 41(8): 987焦華喆, 王樹飛, 吳愛祥, 等. 剪切濃密床層孔隙網絡模型與導水通道演化. 工程科學學報, 2019, 41(8):987
|
[28] |
Bultreys T, Lin Q Y, Gao Y, et al. Validation of model predictions of pore-scale fluid distributions during two-phase flow. <italic>Phys Rev E</italic>, 2018, 97(5): 053104 doi: 10.1103/PhysRevE.97.053104
|