Effect of sand-mold material and extrusion forming process on sand-mold surface properties
-
摘要: 以數字化柔性擠壓成形砂塊為研究對象,通過設計單因素試驗進行了砂型種類、粘結劑質量分數及擠壓壓力對型腔表面質量影響規律的研究,進而得出高精度樹脂砂型擠壓成形的最優參數組合。結果顯示:無模砂型外部與砂型內部的表面性能存在差異。不同砂型種類的砂型型腔表面性能不同,沙粒的角形系數對砂型型腔表面性能有較大影響。隨著砂型擠壓力的提高,砂粒之間的距離減小,砂粒并聯接觸方式增多,砂型在經過切削時,砂型表面產生裂紋的數量及延伸深度大幅減小,砂型型腔表面性能不斷提高。隨著樹脂質量分數的增大,砂粒的包覆厚度增大,從而砂粒的粘結橋增多,砂型強度增加,砂型切削時產生的裂紋數量減小,砂型型腔表面性能不斷提高。本文為真實獲得砂型表面質量提供了方法,有助于無模鑄造精密成形技術的推廣。Abstract: Considering the digital flexible extrusion sand mold as the research object, the surface quality of sand mold was studied by designing a single-factor experiment, and then the optimal parameter for the high-precision flexible forming of sand mold was obtained. The results show that there are differences in surface properties between the outside and inside of the sand mold, and the different types of sand mold had different surface properties. The angle coefficient of sand has a great influence on the sand mold surface properties. With the increase in the extrusion force, the distance between sand grains decreases and the parallel connection mode of sand grains increases. When the sand mold was cut, the number and extension depth of cracks of the sand mold were greatly reduced; thus, the sand mold surface properties increased. With the increase in the resin content, the coating thickness of sand grains increases, the bonding bridge of sand grains increases, the sand mold strength increases, the number of cracks of sand mold decreases, and the surface properties of sand mold increase. In this paper, a new method to obtain the surface quality of sand mold is provided, which can help popularize the precision forming technology of pattern-less casting. The method of sand-mold near-net forming with digital flexible extrusion makes the extrusion unit array pack form the sand-mold cavity. Moreover, in the digital precision forming technology without pattern casting, by filling the mold with molding sand, holding pressure, and hardening, the sand-mold near-net forming is obtained as a preform. This technology saves a lot of molding sand and reduces the amount of cut molding sand in the process of the digital precision forming technology without pattern casting. As the preliminary process of the sand-mold digital precision forming without pattern casting, the technology of sand-mold near-net forming with digital flexible extrusion effectively shortens the development cycle of castings. The basic research on sand mold efficiently achieves high-quality and near-net forming of sand molds with digital flexible extrusion. The research improves the digital level, eco-friendliness, and efficiency level of pattern-less casting technology.
-
Key words:
- digital flexible forming /
- pattern-less casting /
- milling process /
- resin sand /
- sand surface properties
-
圖 6 不同擠壓壓力、樹脂質量分數與砂型表面性能的關系. (a)樹脂質量分數1.6%; (b)樹脂質量分數2.0%;(c)樹脂質量分數2.4%;(d)樹脂質量分數2.8%;(e)樹脂質量分數3.2%
Figure 6. Relationship between the surface properties of sand mold and extrusion pressure under varying resin contents: (a) resin content 1.6%; (b) resin content 2.0%; (c) resin content 2.4%; (d) resin content 2.8%; (e) resin content 3.2%
表 1 不同磨削次序型砂的表面性能
Table 1. Surface properties of sand under different grinding times
Times of grinding Surface properties/g First time 0.7075 Second time 0.4025 Third time 0.3675 Fourth time 0.3525 Fifth time 0.275 表 2 不同種類型砂的表面性能
Table 2. Surface properties of different types of sand
Type of sand Surface properties/g Ceramsite 0.09 Silica sand 0.15 Chromite sand 0.28 表 3 不同擠壓壓力下不同樹脂質量分數砂型的表面性能
Table 3. Surface properties of sand mold with different resin contents under different extrusion pressures
Different extrusion pressures /MPa Surface properties of sand with different
resin contents/g1.6% 2.0% 2.4% 2.8% 3.2% 0 0.203 0.123 0.113 0.090 0.077 0.05 0.193 0.120 0.123 0.063 0.037 0.1 0.194 0.110 0.102 0.060 0.053 0.15 0.193 0.103 0.093 0.063 0.043 0.2 0.160 0.107 0.073 0.063 0.060 表 4 不同樹脂質量分數砂型的表面性能
Table 4. Surface properties with different mass fraction of resin
Mass fraction of resin/% Surface properties/g Mass fraction of resin/% Surface properties/g 1.6 0.708 2.4 0.235 1.8 0.65 2.6 0.247 2.0 0.62 2.8 0.25 2.2 0.51 3.0 0.23 259luxu-164 -
參考文獻
[1] Shan Z D, Qin S Y, Liu Q, et al. Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. Int J Precision Eng Manuf, 2012, 13(7): 1095 doi: 10.1007/s12541-012-0143-y [2] Guo L J, Shan Z D, Liu L M. Effect of digital flexible extrusion process on the properties of sand mold. Foundry Technol, 2020, 41(2): 97郭莉軍, 單忠德, 劉麗敏. 數字化柔性擠壓成形工藝對砂型性能影響規律研究. 鑄造技術, 2020, 41(2):97 [3] Liu F, Shan Z D, Li L, et al. Research on patternless casting technologies for large thin-walled shell pieces. Foundry Technol, 2013, 34(10): 1324劉豐, 單忠德, 李柳, 等. 大型薄壁殼件無模鑄造技術研究. 鑄造技術, 2013, 34(10):1324 [4] Josan A, Bretotean C P, Ra?iu S. Critical analysis of the influence of the possibilities of establishing the moulding technology on obtaining the castings. IOP Conf Ser Mater Sci Eng, 2018, 294: 012038 doi: 10.1088/1757-899X/294/1/012038 [5] Wen S F, Shen Q W, Wei Q S, et al. Material optimization and post-processing of sand moulds manufactured by the selective laser sintering of binder-coated Al2O3 sands. J Mater Process Technol, 2015, 225: 93 [6] Zhang S, Shan Z D, Gu Z X, et al. Study on path planning and process test of molding sand filling sandbox digitally. Foundry, 2016, 65(8): 713 doi: 10.3969/j.issn.1001-4977.2016.08.001張帥, 單忠德, 顧兆現, 等. 數字化砂箱型砂填充路徑規劃及工藝試驗研究. 鑄造, 2016, 65(8):713 doi: 10.3969/j.issn.1001-4977.2016.08.001 [7] Torielli R M, Abrahams R A, Smillie R W, et al. Using lean methodologies for economically and environmentally sustainable foundries. China Foundry, 2011, 8(1): 74 [8] Huang T Y. Casting Handbook Volume 4 Molding Materials. 2nd Ed. Beijing: Machinery Industry Press, 2002黃天佑. 鑄造手冊第4卷: 造型材料. 2版. 北京: 機械工業出版社, 2002 [9] Siddique R, Singh G. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resour Conserv Recycl, 2011, 55(11): 885 doi: 10.1016/j.resconrec.2011.05.001 [10] Sun S H, Koizumi Y, Kurosu S, et al. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater, 2014, 64: 154 doi: 10.1016/j.actamat.2013.10.017 [11] Snelling D, Li Q, Meisel N, et al. Lightweight metal cellular structures fabricated via 3D printing of sand cast molds. Adv Eng Mater, 2015, 17(7): 923 doi: 10.1002/adem.201400524 [12] Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J, 2007, 13(4): 196 doi: 10.1108/13552540710776142 [13] Zocca A, Gomes C M, Bernardo E, et al. LAS glass–ceramic scaffolds by three-dimensional printing. J Eur Ceram Soc, 2013, 33(9): 1525 doi: 10.1016/j.jeurceramsoc.2012.12.012 [14] Butscher A, Bohner M, Roth C, et al. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater, 2012, 8(1): 373 doi: 10.1016/j.actbio.2011.08.027 [15] Almaghariz E S, Conner B P, Lenner L, et al. Quantifying the role of part design complexity in using 3D sand printing for molds and cores. Int J Metalcast, 2016, 10(3): 240 doi: 10.1007/s40962-016-0027-5 [16] Li E Q, Xu Q, Sun J, et al. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle. Sens Actuators A, 2010, 163(1): 315 doi: 10.1016/j.sna.2010.07.014 [17] Dobosz S M, Grabarczyk A, Major-Gabry? K, et al. Influence of quartz sand quality on bending strength and thermal deformation of moulding sands with synthetic binders. Arch Foundry Eng, 2015, 15(2): 9 doi: 10.1515/afe-2015-0028 [18] Dong X L, Li X Y, Shan Z D, et al. Rapid manufacturing of sand molds by direct milling. Tsinghua Sci Technol, 2009, 14(Suppl 1): 212 [19] Ayoola W A, Adeosun S O, Sanni O S, et al. Effect of casting mould on mechanical properties of 6063 aluminum alloy. J Eng Sci Technol, 2012, 7(1): 89 [20] Zhao Z G, Qiu S T, Zhu R. Comparison between the microstructures of M2 steel cast by the water-cooled copper mould and the sand mould. Chin J Eng, 2016, 38(6): 787趙志剛, 仇圣桃, 朱榮. 水冷銅模與砂模鑄造 M2 鋼顯微組織對比. 工程科學學報, 2016, 38(6):787 [21] Xie Z X, Xiang Q C, Mao P L, et al. Comparison and analysis of the springback for twotypes of high compacted sand molds. Foundry, 2004, 53(9): 705 doi: 10.3321/j.issn:1001-4977.2004.09.007謝祖錫, 向青春, 毛萍莉, 等. 兩種高緊實度砂型回彈的檢測與分析. 鑄造, 2004, 53(9):705 doi: 10.3321/j.issn:1001-4977.2004.09.007 [22] Peyre P, Rouchausse Y, Defauchy D, et al. Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. J Mater Process Technol, 2015, 225: 326 doi: 10.1016/j.jmatprotec.2015.04.030 [23] Liu L M, Shan Z D, Liu F. FEM analysis and optimization on casting process for large aluminum castings. Foundry Technol, 2012, 33(8): 978劉麗敏, 單忠德, 劉豐. 大型鑄鋁件鑄造工藝有限元分析與優化. 鑄造技術, 2012, 33(8):978 [24] Cheng R, Wu X Y, Zheng J P. The optimization design study of selective laser sintering process parameters on the pro-coated sand mold. Appl Mech Mater, 2011, 55-57: 853 doi: 10.4028/www.scientific.net/AMM.55-57.853 [25] Senthilkumaran K, Pandey P M, Rao P V M. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des, 2009, 30(8): 2946 doi: 10.1016/j.matdes.2009.01.009 [26] Bernard S A, Balla V K, Bose S, et al. Direct laser processing of bulk lead zirconate titanate ceramics. Mater Sci Eng B, 2010, 172(1): 85 doi: 10.1016/j.mseb.2010.04.022 [27] Zhu Y, Ji D S, Bo W. Composition and preparation of surface stabilizer for green sang mold. Foundry Eng, 2009, 33(3): 5 doi: 10.3969/j.issn.1673-3320.2009.03.002朱筠, 季敦生, 卜偉. 黏土濕型表面穩定劑的組成及制備工藝. 鑄造工程, 2009, 33(3):5 doi: 10.3969/j.issn.1673-3320.2009.03.002 [28] Li H, Du J H, Wang H X, et al. Effect of molding process on tribological characteristics of friction materials based on resin. Chin J Eng, 2017, 39(8): 1182李輝, 杜建華, 王浩旭, 等. 成型工藝對樹脂基摩擦材料及其摩擦學性能的影響. 工程科學學報, 2017, 39(8):1182 [29] Sun Q C, Jin F, Wang G Q, et al. Force chains in a uniaxially compressed static granular matter in 2D. Acta Phys Sin, 2010, 59(1): 30 doi: 10.7498/aps.59.30孫其誠, 金峰, 王光謙, 等. 二維顆粒體系單軸壓縮形成的力鏈結構. 物理學報, 2010, 59(1):30 doi: 10.7498/aps.59.30 -