<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

型砂材質與擠壓成形工藝對砂型表面性能的影響

郭莉軍 單忠德 劉麗敏 姜二彪

郭莉軍, 單忠德, 劉麗敏, 姜二彪. 型砂材質與擠壓成形工藝對砂型表面性能的影響[J]. 工程科學學報, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
引用本文: 郭莉軍, 單忠德, 劉麗敏, 姜二彪. 型砂材質與擠壓成形工藝對砂型表面性能的影響[J]. 工程科學學報, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
GUO Li-jun, SHAN Zhong-de, LIU Li-min, JIANG Er-biao. Effect of sand-mold material and extrusion forming process on sand-mold surface properties[J]. Chinese Journal of Engineering, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
Citation: GUO Li-jun, SHAN Zhong-de, LIU Li-min, JIANG Er-biao. Effect of sand-mold material and extrusion forming process on sand-mold surface properties[J]. Chinese Journal of Engineering, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002

型砂材質與擠壓成形工藝對砂型表面性能的影響

doi: 10.13374/j.issn2095-9389.2020.01.15.002
基金項目: 國家杰出青年科學基金資助項目(51525503);機械科學研究總院技術發展基金資助項目(311908Q9)
詳細信息
    通訊作者:

    E-mail:shanzd@cam.com.cn

  • 中圖分類號: TG242.5

Effect of sand-mold material and extrusion forming process on sand-mold surface properties

More Information
  • 摘要: 以數字化柔性擠壓成形砂塊為研究對象,通過設計單因素試驗進行了砂型種類、粘結劑質量分數及擠壓壓力對型腔表面質量影響規律的研究,進而得出高精度樹脂砂型擠壓成形的最優參數組合。結果顯示:無模砂型外部與砂型內部的表面性能存在差異。不同砂型種類的砂型型腔表面性能不同,沙粒的角形系數對砂型型腔表面性能有較大影響。隨著砂型擠壓力的提高,砂粒之間的距離減小,砂粒并聯接觸方式增多,砂型在經過切削時,砂型表面產生裂紋的數量及延伸深度大幅減小,砂型型腔表面性能不斷提高。隨著樹脂質量分數的增大,砂粒的包覆厚度增大,從而砂粒的粘結橋增多,砂型強度增加,砂型切削時產生的裂紋數量減小,砂型型腔表面性能不斷提高。本文為真實獲得砂型表面質量提供了方法,有助于無模鑄造精密成形技術的推廣。

     

  • 圖  1  表面性能測試原理

    Figure  1.  Diagram of the surface property test

    圖  2  試樣加工

    Figure  2.  Sample processing

    圖  3  砂粒接觸模型

    Figure  3.  Sand contact model

    圖  4  砂粒質量與磨削次數的關系

    Figure  4.  Relationship between the sand quality and grinding time

    圖  5  砂粒形貌。(a)寶珠砂;(b)硅砂;(c)鉻鐵礦砂

    Figure  5.  Sand grain appearance: (a) ceramsite; (b) silica sand; (c) chromite sand

    圖  6  不同擠壓壓力、樹脂質量分數與砂型表面性能的關系. (a)樹脂質量分數1.6%; (b)樹脂質量分數2.0%;(c)樹脂質量分數2.4%;(d)樹脂質量分數2.8%;(e)樹脂質量分數3.2%

    Figure  6.  Relationship between the surface properties of sand mold and extrusion pressure under varying resin contents: (a) resin content 1.6%; (b) resin content 2.0%; (c) resin content 2.4%; (d) resin content 2.8%; (e) resin content 3.2%

    圖  7  不同樹脂質量分數與砂型表面性能的關系

    Figure  7.  Relationship between the surface properties of sand mold and resin content

    表  1  不同磨削次序型砂的表面性能

    Table  1.   Surface properties of sand under different grinding times

    Times of grindingSurface properties/g
    First time0.7075
    Second time0.4025
    Third time0.3675
    Fourth time0.3525
    Fifth time0.275
    下載: 導出CSV

    表  2  不同種類型砂的表面性能

    Table  2.   Surface properties of different types of sand

    Type of sandSurface properties/g
    Ceramsite0.09
    Silica sand0.15
    Chromite sand0.28
    下載: 導出CSV

    表  3  不同擠壓壓力下不同樹脂質量分數砂型的表面性能

    Table  3.   Surface properties of sand mold with different resin contents under different extrusion pressures

    Different extrusion pressures /MPaSurface properties of sand with different
    resin contents/g
    1.6%2.0%2.4%2.8%3.2%
    00.2030.1230.1130.0900.077
    0.050.1930.1200.1230.0630.037
    0.10.1940.1100.1020.0600.053
    0.150.1930.1030.0930.0630.043
    0.20.1600.1070.0730.0630.060
    下載: 導出CSV

    表  4  不同樹脂質量分數砂型的表面性能

    Table  4.   Surface properties with different mass fraction of resin

    Mass fraction of resin/%Surface properties/gMass fraction of resin/%Surface properties/g
    1.60.7082.40.235
    1.80.652.60.247
    2.00.622.80.25
    2.20.513.00.23
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Shan Z D, Qin S Y, Liu Q, et al. Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. Int J Precision Eng Manuf, 2012, 13(7): 1095 doi: 10.1007/s12541-012-0143-y
    [2] Guo L J, Shan Z D, Liu L M. Effect of digital flexible extrusion process on the properties of sand mold. Foundry Technol, 2020, 41(2): 97

    郭莉軍, 單忠德, 劉麗敏. 數字化柔性擠壓成形工藝對砂型性能影響規律研究. 鑄造技術, 2020, 41(2):97
    [3] Liu F, Shan Z D, Li L, et al. Research on patternless casting technologies for large thin-walled shell pieces. Foundry Technol, 2013, 34(10): 1324

    劉豐, 單忠德, 李柳, 等. 大型薄壁殼件無模鑄造技術研究. 鑄造技術, 2013, 34(10):1324
    [4] Josan A, Bretotean C P, Ra?iu S. Critical analysis of the influence of the possibilities of establishing the moulding technology on obtaining the castings. IOP Conf Ser Mater Sci Eng, 2018, 294: 012038 doi: 10.1088/1757-899X/294/1/012038
    [5] Wen S F, Shen Q W, Wei Q S, et al. Material optimization and post-processing of sand moulds manufactured by the selective laser sintering of binder-coated Al2O3 sands. J Mater Process Technol, 2015, 225: 93
    [6] Zhang S, Shan Z D, Gu Z X, et al. Study on path planning and process test of molding sand filling sandbox digitally. Foundry, 2016, 65(8): 713 doi: 10.3969/j.issn.1001-4977.2016.08.001

    張帥, 單忠德, 顧兆現, 等. 數字化砂箱型砂填充路徑規劃及工藝試驗研究. 鑄造, 2016, 65(8):713 doi: 10.3969/j.issn.1001-4977.2016.08.001
    [7] Torielli R M, Abrahams R A, Smillie R W, et al. Using lean methodologies for economically and environmentally sustainable foundries. China Foundry, 2011, 8(1): 74
    [8] Huang T Y. Casting Handbook Volume 4 Molding Materials. 2nd Ed. Beijing: Machinery Industry Press, 2002

    黃天佑. 鑄造手冊第4卷: 造型材料. 2版. 北京: 機械工業出版社, 2002
    [9] Siddique R, Singh G. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resour Conserv Recycl, 2011, 55(11): 885 doi: 10.1016/j.resconrec.2011.05.001
    [10] Sun S H, Koizumi Y, Kurosu S, et al. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater, 2014, 64: 154 doi: 10.1016/j.actamat.2013.10.017
    [11] Snelling D, Li Q, Meisel N, et al. Lightweight metal cellular structures fabricated via 3D printing of sand cast molds. Adv Eng Mater, 2015, 17(7): 923 doi: 10.1002/adem.201400524
    [12] Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J, 2007, 13(4): 196 doi: 10.1108/13552540710776142
    [13] Zocca A, Gomes C M, Bernardo E, et al. LAS glass–ceramic scaffolds by three-dimensional printing. J Eur Ceram Soc, 2013, 33(9): 1525 doi: 10.1016/j.jeurceramsoc.2012.12.012
    [14] Butscher A, Bohner M, Roth C, et al. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater, 2012, 8(1): 373 doi: 10.1016/j.actbio.2011.08.027
    [15] Almaghariz E S, Conner B P, Lenner L, et al. Quantifying the role of part design complexity in using 3D sand printing for molds and cores. Int J Metalcast, 2016, 10(3): 240 doi: 10.1007/s40962-016-0027-5
    [16] Li E Q, Xu Q, Sun J, et al. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle. Sens Actuators A, 2010, 163(1): 315 doi: 10.1016/j.sna.2010.07.014
    [17] Dobosz S M, Grabarczyk A, Major-Gabry? K, et al. Influence of quartz sand quality on bending strength and thermal deformation of moulding sands with synthetic binders. Arch Foundry Eng, 2015, 15(2): 9 doi: 10.1515/afe-2015-0028
    [18] Dong X L, Li X Y, Shan Z D, et al. Rapid manufacturing of sand molds by direct milling. Tsinghua Sci Technol, 2009, 14(Suppl 1): 212
    [19] Ayoola W A, Adeosun S O, Sanni O S, et al. Effect of casting mould on mechanical properties of 6063 aluminum alloy. J Eng Sci Technol, 2012, 7(1): 89
    [20] Zhao Z G, Qiu S T, Zhu R. Comparison between the microstructures of M2 steel cast by the water-cooled copper mould and the sand mould. Chin J Eng, 2016, 38(6): 787

    趙志剛, 仇圣桃, 朱榮. 水冷銅模與砂模鑄造 M2 鋼顯微組織對比. 工程科學學報, 2016, 38(6):787
    [21] Xie Z X, Xiang Q C, Mao P L, et al. Comparison and analysis of the springback for twotypes of high compacted sand molds. Foundry, 2004, 53(9): 705 doi: 10.3321/j.issn:1001-4977.2004.09.007

    謝祖錫, 向青春, 毛萍莉, 等. 兩種高緊實度砂型回彈的檢測與分析. 鑄造, 2004, 53(9):705 doi: 10.3321/j.issn:1001-4977.2004.09.007
    [22] Peyre P, Rouchausse Y, Defauchy D, et al. Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. J Mater Process Technol, 2015, 225: 326 doi: 10.1016/j.jmatprotec.2015.04.030
    [23] Liu L M, Shan Z D, Liu F. FEM analysis and optimization on casting process for large aluminum castings. Foundry Technol, 2012, 33(8): 978

    劉麗敏, 單忠德, 劉豐. 大型鑄鋁件鑄造工藝有限元分析與優化. 鑄造技術, 2012, 33(8):978
    [24] Cheng R, Wu X Y, Zheng J P. The optimization design study of selective laser sintering process parameters on the pro-coated sand mold. Appl Mech Mater, 2011, 55-57: 853 doi: 10.4028/www.scientific.net/AMM.55-57.853
    [25] Senthilkumaran K, Pandey P M, Rao P V M. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des, 2009, 30(8): 2946 doi: 10.1016/j.matdes.2009.01.009
    [26] Bernard S A, Balla V K, Bose S, et al. Direct laser processing of bulk lead zirconate titanate ceramics. Mater Sci Eng B, 2010, 172(1): 85 doi: 10.1016/j.mseb.2010.04.022
    [27] Zhu Y, Ji D S, Bo W. Composition and preparation of surface stabilizer for green sang mold. Foundry Eng, 2009, 33(3): 5 doi: 10.3969/j.issn.1673-3320.2009.03.002

    朱筠, 季敦生, 卜偉. 黏土濕型表面穩定劑的組成及制備工藝. 鑄造工程, 2009, 33(3):5 doi: 10.3969/j.issn.1673-3320.2009.03.002
    [28] Li H, Du J H, Wang H X, et al. Effect of molding process on tribological characteristics of friction materials based on resin. Chin J Eng, 2017, 39(8): 1182

    李輝, 杜建華, 王浩旭, 等. 成型工藝對樹脂基摩擦材料及其摩擦學性能的影響. 工程科學學報, 2017, 39(8):1182
    [29] Sun Q C, Jin F, Wang G Q, et al. Force chains in a uniaxially compressed static granular matter in 2D. Acta Phys Sin, 2010, 59(1): 30 doi: 10.7498/aps.59.30

    孫其誠, 金峰, 王光謙, 等. 二維顆粒體系單軸壓縮形成的力鏈結構. 物理學報, 2010, 59(1):30 doi: 10.7498/aps.59.30
  • 加載中
圖(7) / 表(4)
計量
  • 文章訪問數:  1712
  • HTML全文瀏覽量:  905
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-15
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回