Trial manufacture and properties of protective lubricants for hot extrusion of zirconium alloy
-
摘要: 為滿足鋯合金熱擠壓時的潤滑與防護需求,試制了一種鋯合金熱擠壓用防護潤滑劑,主要成分包括有機硅樹脂、低軟化點玻璃粉、氧化鋁粉、二硫化鉬、石墨粉、滑石粉、云母粉等。實驗溫度為700~800 ℃時,采用圓環壓縮法測得涂覆有潤滑劑的Zr-4合金摩擦因子為0.19~0.25,潤滑效果良好。將有潤滑劑防護的鋯合金分別加熱至700、800和900 ℃并保溫1 h,未發生明顯氧化,熱防護性能良好。測定了有、無潤滑劑條件下Zr-4合金和H13模具鋼的界面接觸溫度隨接觸時間的變化曲線。當Zr-4合金和H13鋼的初始界面溫度分別約為700 ℃和350 ℃時,無潤滑劑時Zr-4合金表面溫度達到穩定的時間為7.7 s,界面換熱系數由250 W·m?2·℃?1增大至2700 W·m?2·℃?1;有潤滑劑時Zr-4合金表面溫度達到穩定的時間延長至12 s,界面換熱系數由131 W·m?2·℃?1增大至1900 W·m?2·℃?1。這表明該潤滑劑具有較好的高溫熱障性能。Abstract: Lubrication is the key in obtaining excellent products when zirconium alloys are hot extruded. Reasonable lubrication conditions are important to improve the product quality, reduce energy consumption, and prolong the service life of tools and dies. Presently, the glass lubricants commonly used in domestic industry are not very suitable for hot extrusion zirconium alloy, and they still need to be imported. In order to meet the requirements of lubrication and protection during hot extrusion of zirconium alloy, a protective lubricant for hot extrusion of zirconium alloy was trial manufactured in this paper. The main components of this protective lubricant include silicone resin, low softening point glass powder, aluminum oxide (Al2O3) powder, molybdenum disulfide, graphite powder, talcum powder, mica powder, and others. When the experimental temperature is in the range of 700?800 ℃, the friction factor of Zr-4 alloy coated with the lubricant is calculated to be 0.19?0.25 by the ring compression method, which shows good lubrication effect. The zirconium alloy with lubricant protection is not obviously oxidized after heating at 700 ℃, 800 ℃, and 900 ℃, respectively, for 1 h, indicating that the lubricant has good thermal protection effect. The relation curves between contact temperature and time at the interface of the Zr-4 alloy and H13 die steel are measured. The initial interface temperatures of the Zr-4 alloy and H13 steel are 700 ℃ and 350 ℃, respectively. Without the lubricant, the time for the surface temperature of the Zr-4 alloy to reach stability is 7.7 s, and the interfacial heat transfer coefficient increases from 250 W·m?2·℃?1 to 2700 W·m?2·℃?1. On the other and, when the lubricant was used, the time for the surface temperature of Zr-4 alloy to reach stability is prolonged to 12 s, and the interfacial heat transfer coefficient increases from 131 W·m?2·℃?1 to 1900 W·m?2·℃?1, indicating that the lubricant has good thermal barrier properties.
-
Key words:
- zirconium alloy /
- extrusion /
- lubricant /
- friction factor /
- thermal protection
-
圖 4 Zr-4合金試樣橫截面形貌。(a)無潤滑劑,700 ℃;(b)無潤滑劑,800 ℃;(c)無潤滑劑,900 ℃;(d)有潤滑劑,700 ℃;(e)有潤滑劑,800 ℃;(f)有潤滑劑,900 ℃
Figure 4. Cross-sectional morphology of Zr-4 alloy: (a) without lubricant, 700 ℃; (b) without lubricant, 800 ℃; (c) without lubricant, 900 ℃; (d) with lubricant, 700 ℃; (e) with lubricant, 800 ℃; (f) with lubricant, 900 ℃
表 1 無鉛低軟化點玻璃粉末主要成分(質量分數)
Table 1. Main components of lead-free low softening point glass powder
% P2O5 B2O3 ZnO N2O+K2O 60 6 21 Bal. 表 2 潤滑劑配方的質量比和狀態
Table 2. Mass ratio and status of lubricant formula
Formula Glass powder Silicone resin Al2O3 power Talcum powder Mica powder Status 1 6 2 1 1 1.5 Not soften; bubbles present 2 9 1 1 1 1.5 Poor adhesion 3 9 5 1 1 1.5 Carbonization 4 9 2 1 1 1.5 Good adhesion and fluidity 表 3 添加不同含量二硫化鉬時的潤滑劑摩擦因子
Table 3. Friction factors of lubricants with different molybdenum disulfide contents
Mass fraction of MoS2/% Friction factors, mt 5 0.48 10 0.34 20 0.31 30 0.29 表 4 潤滑劑配方的質量比和摩擦因子
Table 4. Mass ratio and friction factors of lubricant formula
Formula Glass
powderSilicone
resinAl2O3
powerTalcum
powderMica
powderMoS2
powderGraphite
powderB2O3
powderFriction factors,
mt5 9 3 1.5 2 1 2 1.6 1.5 0.65 6 9 5 1.5 2 1 2 1.6 1.5 7 9 3 1.5 2 1 2 2 1 8 9 3 1.5 2 1 2 2 0 0.2 表 5 潤滑劑基礎粉末成分(質量分數)
Table 5. Lubricant base powder composition
% Glass powder Al2O3 power Talcum powder Mica powder MoS2 Graphite powder 50?60 5?10 10?15 5?10 10?15 10?15 表 6 圓環壓縮實驗結果
Table 6. Results of ring compression experiments
Sample Lubricant Temperature / ℃ Friction factors, mt 1 No lubricant 750 1 2 Westinghouse 700 0.20±0.01 3 Westinghouse 750 0.22±0.02 4 Westinghouse 800 0.27±0.01 7 Present study 700 0.19±0.01 8 Present study 750 0.20±0.01 9 Present study 800 0.25±0.01 259luxu-164 -
參考文獻
[1] Yang F, Wei B L, Wang X F. Research advance and future direction of nuclear graded zirconium alloy. Met World, 2016(3): 24 doi: 10.3969/j.issn.1000-6826.2016.03.07楊鋒, 尉北玲, 王旭峰. 核級鋯合金研究現狀及我國核級鋯材發展方向. 金屬世界, 2016(3):24 doi: 10.3969/j.issn.1000-6826.2016.03.07 [2] Wang L X, Zhang X Y, Xue X Y, et al. Study on the microstructure and texture of zirconium alloy tube. Rare Met Mater Eng, 2013, 42(1): 153 doi: 10.3969/j.issn.1002-185X.2013.01.031王麗霞, 張喜燕, 薛祥義, 等. 鋯合金擠壓管坯的組織及織構研究. 稀有金屬材料與工程, 2013, 42(1):153 doi: 10.3969/j.issn.1002-185X.2013.01.031 [3] Guo X C, Luan B F, Chen J W, et al. Distribution characteristics of precipitation of N18 zirconium alloy. Rare Met Mater Eng, 2011, 40(5): 813過錫川, 欒佰峰, 陳建偉, 等. N18鋯合金沉淀相分布特征的研究. 稀有金屬材料與工程, 2011, 40(5):813 [4] Zhu G W, Zhao Y C, Zhao F, et al. Effect of stress annealing on texture and recrystallization behavior of Zr-4 alloy. Chin J Eng, 2020, 42(9): 1174朱廣偉, 趙乙丞, 趙帆, 等. 張力退火對Zr-4合金織構和再結晶行為的影響. 工程科學學報, 2020, 42(9):1174 [5] Li B T, Li Z, Kang J Y, et al. Preparation of Y2O3 refractories and research of interface reaction of Y2O3 with Zr alloy. Chin J Rare Met, 2018, 42(7): 722李寶同, 李柱, 康菊蕓, 等. Y2O3耐火材料的制備及其與Zr合金界面反應研究. 稀有金屬, 2018, 42(7):722 [6] Li Y H. Induction heating of copper and copper alloy plastic deformation processing (Ⅰ). Met Work, 2016(7): 60李韻豪. 銅及銅合金塑性變形加工的感應加熱(上). 金屬加工(熱加工), 2016(7):60 [7] Liu C Y, Zhang R J, Yan Y N, et al. Lubrication behavior of the glass lubricated hot extrusion process. J Mech Eng, 2011, 47(20): 127劉長勇, 張人佶, 顏永年, 等. 玻璃潤滑熱擠壓工藝的潤滑行為分析. 機械工程學報, 2011, 47(20):127 [8] Duan S J, Li X C. T281 environment-friendly and air resistant glass lubricant for precision forging of titanium alloys. Forg Stamp Technol, 2010, 35(1): 114 doi: 10.3969/j.issn.1000-3940.2010.01.031段素杰, 李錫春. 鈦合金精鍛工藝用T281環保型玻璃防護潤滑劑. 鍛壓技術, 2010, 35(1):114 doi: 10.3969/j.issn.1000-3940.2010.01.031 [9] Jin F, Ni J, Zhang Z H, et al. Viscosity?temperature characteristics, hot corrosion, and thermal barrier properties of new glass lubricants containing NaCl for the extrusion of titanium alloys. Chin J Eng, 2018, 40(6): 721金峰, 倪嘉, 張志豪, 等. 鈦合金擠壓用含NaCl新型玻璃潤滑劑的黏?溫特性、熱腐蝕及熱障性能. 工程科學學報, 2018, 40(6):721 [10] Wang S Y, Li H Z, Li H Q, et al. Study on glass-protective lubricants for titanium alloy forging. Forg Stamp Technol, 2003(4): 3 doi: 10.3969/j.issn.1000-3940.2003.04.002王淑云, 李輝忠, 李惠曲, 等. 鈦合金鍛造用玻璃防護潤滑劑的研制. 鍛壓技術, 2003(4):3 doi: 10.3969/j.issn.1000-3940.2003.04.002 [11] Chen X D, Pang H X, Liu B Y, et al. Study on viscosity and structure of aluminosilicate glass lubricant. J Inner Mongolia Univ Sci Technol, 2018, 37(3): 185陳曉東, 龐紅星, 劉寶友, 等. 鋁硅酸鹽玻璃潤滑劑黏度與結構研究. 內蒙古科技大學學報, 2018, 37(3):185 [12] Bao T J, Li F L, Wang Z J, et al. Research and properties of new type glass protective lubricant for large-size titanium alloy forging // Proceedings of 7th CSAA Science and Technology Youth Forum. Zhongshan, 2016: 541鮑天驕, 李鳳蘭, 王振軍, 等. 大型鈦合金鍛件用新型玻璃防護潤滑劑的研制與性能測試//第七屆中國航空學會青年科技論壇文集. 中山, 2016:541 [13] Fan Q, Zhou D L, Yang L, et al. Study on the oxidation resistance and tribological behavior of glass lubricants used in hot extrusion of commercial purity titanium. Colloids Surf A, 2018, 559: 251 [14] Hu Y, Wang X M, Gao Y B, et al. Numerical simulation of effect of glass lubricant on hot extrusion of Inconel 625 alloy tubes. Procedia Manuf, 2019, 37: 119 [15] Lin B, Wang B S, Zhang M C, et al. Research on lubrication in hot extrusion of G3 corrosion resistant Ni-based alloy tube Ⅱ. Calculation and application of glass lubricant viscosity?composition. Acta Metall Sin, 2011, 47(3): 374林奔, 王寶順, 張麥倉, 等. G3鎳基耐蝕合金管材熱擠壓工藝潤滑行為研究Ⅱ. 玻璃潤滑劑黏度?成分計算方法及應用. 金屬學報, 2011, 47(3):374 [16] Wang S Y, Duan S J, Li H Q, et al. Study of glass-protective lubricant for stainless steel forging. Forg Stamp Technol, 2009, 34(6): 8 doi: 10.3969/j.issn.1000-3940.2009.06.003王淑云, 段素杰, 李惠曲, 等. 不銹鋼鍛造用玻璃防護潤滑劑. 鍛壓技術, 2009, 34(6):8 doi: 10.3969/j.issn.1000-3940.2009.06.003 [17] Liu C Y, Zhang R J, Yan Y N, et al. Investigation on heat transfer coefficient of glass lubricated interface between P92 heat-resistant steel and H13 steel. J Plast Eng, 2011, 18(5): 24 doi: 10.3969/j.issn.1007-2012.2011.05.005劉長勇, 張人佶, 顏永年, 等. 帶有玻璃潤滑劑的P92耐熱鋼與H13模具鋼間的界面傳熱系數. 塑性工程學報, 2011, 18(5):24 doi: 10.3969/j.issn.1007-2012.2011.05.005 [18] Wang L L, Zhou J, Duszczyk J, et al. Friction in aluminium extrusion-Part 1: A review of friction testing techniques for aluminium extrusion. Tribol Int, 2012, 56: 89 [19] Yan J, Lu S L. Study on friction boundary condition in metal hot deformation. J Univ Sci Technol Beijing, 1999, 21(6): 539 doi: 10.3321/j.issn:1001-053X.1999.06.008閻軍, 鹿守理. 金屬熱變形時摩擦邊界條件的確定. 北京科技大學學報, 1999, 21(6):539 doi: 10.3321/j.issn:1001-053X.1999.06.008 [20] Li L X, Peng D S, Liu J A, et al. An experimental study of the lubrication behavior of A5 glass lubricant by means of the ring compression test. J Mater Process Technol, 2000, 102(1-3): 138 [21] Jiang G P, Liang R Q, Huang J N, et al. The calibration curves for the ring compression test. Forg Stamp Technol, 1981(3): 7江國屏, 梁人棋, 黃健寧, 等. 圓環塑性壓縮試驗的標定曲線. 鍛壓技術, 1981(3):7 [22] Ni J, Wang L, Zhang Z H, et al. Interfacial heat transfer behavior between Zr-4 alloy and H13 die steel. Rare Met Mater Eng, 2019, 48(5): 1579倪嘉, 王練, 張志豪, 等. Zr-4合金與H13模具鋼的界面換熱行為研究. 稀有金屬材料與工程, 2019, 48(5):1579 [23] Fan Z D, Zhang P, Cheng X Y, et al. Development of 800 ℃ resistant sealing material and coating. New Chem Mater, 2006, 34(5): 61 doi: 10.3969/j.issn.1006-3536.2006.05.020范召東, 張鵬, 成曉陽, 等. 耐800 ℃密封材料(涂料)的研制. 化工新型材料, 2006, 34(5):61 doi: 10.3969/j.issn.1006-3536.2006.05.020 [24] Molybdenum Disulfide Group of Tianjin Industrial Exhibition Hall. New Solid Lubrication Material: Molybdenum Disulfide. Tianjin: Tianjin People’s Publishing House, 1972天津市工業展覽館二硫化鉬小組. 新型固體潤滑材料: 二硫化鉬. 天津: 天津人民出版社, 1972 [25] Ammar Y B, Aoufi A, Darrieulat M. Influence of the cooling rate on the texture and the microstructure of Zircaloy-4 studied by means of a Jominy end-quench test. Mater Sci Eng A, 2012, 556: 184 -