<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

1300 MPa級Nb微合金化DH鋼的組織性能

梁江濤 趙征志 劉錕 韓赟 潘輝 惠亞軍 曹榮華 路洪洲 郭愛民

梁江濤, 趙征志, 劉錕, 韓赟, 潘輝, 惠亞軍, 曹榮華, 路洪洲, 郭愛民. 1300 MPa級Nb微合金化DH鋼的組織性能[J]. 工程科學學報, 2021, 43(3): 392-399. doi: 10.13374/j.issn2095-9389.2020.01.13.002
引用本文: 梁江濤, 趙征志, 劉錕, 韓赟, 潘輝, 惠亞軍, 曹榮華, 路洪洲, 郭愛民. 1300 MPa級Nb微合金化DH鋼的組織性能[J]. 工程科學學報, 2021, 43(3): 392-399. doi: 10.13374/j.issn2095-9389.2020.01.13.002
LIANG Jiang-tao, ZHAO Zheng-zhi, LIU Kun, HAN Yun, PAN Hui, HUI Ya-jun, CAO Rong-hua, LU Hong-zhou, GUO Ai-min. Microstructure and properties of 1300-MPa grade Nb microalloying DH steel[J]. Chinese Journal of Engineering, 2021, 43(3): 392-399. doi: 10.13374/j.issn2095-9389.2020.01.13.002
Citation: LIANG Jiang-tao, ZHAO Zheng-zhi, LIU Kun, HAN Yun, PAN Hui, HUI Ya-jun, CAO Rong-hua, LU Hong-zhou, GUO Ai-min. Microstructure and properties of 1300-MPa grade Nb microalloying DH steel[J]. Chinese Journal of Engineering, 2021, 43(3): 392-399. doi: 10.13374/j.issn2095-9389.2020.01.13.002

1300 MPa級Nb微合金化DH鋼的組織性能

doi: 10.13374/j.issn2095-9389.2020.01.13.002
基金項目: 國家十三五重點研發資助課題(2017YFB0304400);國家自然科學基金資助項目(51574028);中信鈮鋼發展獎勵基金資助項目(2017FWNB3077)
詳細信息
    通訊作者:

    E-mail:zhaozhzhi@ustb.edu.cn

  • 中圖分類號: TG111.91; TG142.1

Microstructure and properties of 1300-MPa grade Nb microalloying DH steel

More Information
  • 摘要: 設計了不同相構成的超高強DH鋼,抗拉強度均大于1300 MPa,組織由鐵素體、馬氏體、殘留奧氏體和極少量碳化物構成。對比了不同相構成對超高強DH鋼力學性能和應變硬化行為等的影響,并深入研究了殘留奧氏體在超高強度DH鋼中的作用機制。結果表明:隨著馬氏體和殘留奧氏體體積分數的增大,鐵素體體積分數的減小,實驗鋼屈服和抗拉強度同時升高,而延伸率呈先增大后減小趨勢。軟韌相鐵素體體積分數的減小和硬相馬氏體體積分數的增大導致屈服強度和抗拉強度增加。相對于回火馬氏體,淬火馬氏體對強度的提升更顯著,在拉伸過程中轉變的殘留奧氏體的量是引起延伸率變化的主要原因,組織中顯著的帶狀組織會造成頸縮后延伸率的明顯降低。通過對應變硬化行為的分析表明,隨著真應變的增大,應變硬化率呈減小的趨勢,在真應變大于2%后的大范圍內,對于應變硬化率,DH1>DH2>DH3,主要與鐵素體體積分數有關;在真應變大于5.73%后,DH2鋼的應變硬化率高于DH1鋼和DH3鋼,主要與DH2鋼中更顯著的TRIP效應有關。除了殘留奧氏體體積分數,殘留奧氏體中的碳含量對TRIP效應同樣有顯著的影響。較高比例的硬相馬氏體組織結合適當比例的軟韌相鐵素體和殘留奧氏體有助于DH2鋼獲得最良好的強塑積13.17 GPa·%,其中屈服強度達880 MPa,抗拉強度達1497 MPa,均勻延伸率為6.71%,總伸長率為8.8%,頸縮后延伸率為2.09%,屈強比0.59。

     

  • 圖  1  測量TAc1TAc3的膨脹量–溫度曲線

    Figure  1.  Measurement of expansion–temperature curves of TAc1 and TAc3

    圖  2  測量TMsTMf的膨脹量–溫度曲線

    Figure  2.  Measurement of expansion–temperature curve of TMs and TMf

    圖  3  實驗鋼的SEM照片。(a)DH1;(b)DH2;(c)DH3

    Figure  3.  SEM images of the tested steels: (a) DH1; (b) DH2; (c) DH3

    圖  4  實驗鋼的EBSD照片。(a)DH1;(b)DH2;(c)DH3

    Figure  4.  EBSD photos of the tested steels: (a) DH1; (b) DH2; (c) DH3

    圖  5  實驗鋼中各相體積分數

    Figure  5.  Volume fraction of each phase in the tested steels

    圖  6  DH2實驗鋼的TEM圖

    Figure  6.  TEM photographs of DH2 the tested steels

    圖  7  實驗鋼的XRD譜線(a)和實驗鋼中殘留奧氏體體積分數及殘留奧氏體中碳元素的質量分數(b)

    Figure  7.  XRD patterns of the tested steels (a) and retained austenite volume fraction and carbon mass fraction in retained austenite of the tested steels (b)

    圖  8  DH2實驗鋼中殘留奧氏體TEM照片。(a)塊狀殘留奧氏體明場像;(b)塊狀殘留奧氏體暗場像;(c)薄膜狀殘留奧氏體明場像;(d)薄膜狀殘留奧氏體暗場像

    Figure  8.  TEM images of retained austenite in DH2 steel: (a) bright-field image of block retained austenite; (b) dark-field image of block retained austenite; (c) bright-field image of retained austenite film; (d) dark field image of retained austenite film

    圖  9  實驗鋼的工程應力–應變曲線

    Figure  9.  Engineering stress–strain curves of the tested steels

    圖  10  實驗鋼的真應力–真應變曲線和應變硬化曲線

    Figure  10.  True stress–strain and strain hardening curves of the tested steels

    表  1  實驗鋼的主要化學成分 (質量分數)

    Table  1.   Main chemical composition of the tested steel %

    CSiMnCrNbFe
    0.17–0.200.13–0.151.90–2.200.08–0.120.03–0.05Bal.
    下載: 導出CSV

    表  2  實驗鋼的力學性能

    Table  2.   Mechanical properties of the tested steels

    SteelYield strength /
    MPa
    Ultimate tensile
    strength / MPa
    Uniform elongation /
    %
    Total elongation /
    %
    Post uniform
    elongation / %
    Yield ratioUltimate tensile strength×
    Total elongation / (GPa·%)
    DH166013856.196.730.540.489.32
    DH288014976.718.82.090.5913.17
    DH396015345.126.761.640.6310.40
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ding R, Dai Z B, Huang M X, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe–0.2C–8Mn–2Al medium Mn steel. Acta Mater, 2018, 147: 59
    [2] Michiuchi M, Nambu S, Ishimoto Y, et al. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation. Acta Mater, 2009, 57(18): 5283
    [3] Sun J J, Jiang T, Wang Y J, et al. Effect of grain refinement on high-carbon martensite transformation and its mechanical properties. Mater Sci Eng A, 2018, 726: 342 doi: 10.1016/j.msea.2018.04.095
    [4] Sarkar R, Chandra S K, De P S, et al. Evaluation of a ductile tearing resistance of dual-phase DP 780 grade automotive steel sheet from essential work of fracture (EWF) tests. Theor Appl Fract Mech, 2019, 103: 102278 doi: 10.1016/j.tafmec.2019.102278
    [5] Zhao Z Z, Tong T T, Liang J H, et al. Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng A, 2014, 618: 182
    [6] Seo E J, Cho L, De Cooman B C. Application of quenching and partitioning (Q& P) processing to press hardening steel. Metall Mater Trans A, 2014, 45(9): 4022
    [7] Kong H, Chao Q, Cai M H, et al. One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater Sci Eng A, 2017, 707: 538 doi: 10.1016/j.msea.2017.09.038
    [8] Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater, 2013, 68(5): 321 doi: 10.1016/j.scriptamat.2012.11.003
    [9] Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanism of lath martensite plasticity. Acta Mater, 2016, 121: 202 doi: 10.1016/j.actamat.2016.09.006
    [10] Zhang B, Du L X, Dong Y, et al. Structure-property relationship in novel low carbon hot-rolled TRIP steels via thermo-mechanical controlled processing and coiling. Mater Sci Eng A, 2020, 771: 138643 doi: 10.1016/j.msea.2019.138643
    [11] Maruyama H. X-ray measurement of retained austenite volume fraction. J Jpn Soc Heat Treat, 1977, 17: 198
    [12] Sugimoto K, Sakaguchi J, Iida T, et al. Stretch-flangeability of a high-strength TRIP type bainitic sheet steel. ISIJ Int, 2000, 40(9): 92
    [13] Zhu G M, Kuang S, Chen G J, et al. Effect of martensite on yield characteristics of cold rolled C–Si–Mn dual phase steel. J Mater Eng, 2011(4): 66 doi: 10.3969/j.issn.1001-4381.2011.04.014

    朱國明, 鄺霜, 陳貴江, 等. 馬氏體對C–Si–Mn冷軋雙相鋼屈服特性的影響. 材料工程, 2011(4):66 doi: 10.3969/j.issn.1001-4381.2011.04.014
    [14] Akbarpour M R, Ekrami A. Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels. Mater Sci Eng A, 2008, 477(1-2): 306
    [15] Sayed A A, Kheirandish S. Affect of the tempering temperature on the microstructure and mechanical properties of dual phase steels. Mater Sci Eng A, 2012, 532: 21 doi: 10.1016/j.msea.2011.10.056
    [16] Zhu B, Liu Z, Wang Y N, et al. Application of a model for quenching and partitioning in hot stamping of high-strength steel. Metall Mater Trans A, 2018, 49(4): 1304 doi: 10.1007/s11661-018-4484-8
    [17] Du C, Hoefnagels J P M, Vaes R, et al. Plasticity of lath martensite by sliding of substructure boundaries. Scripta Mater, 2016, 120: 37
    [18] Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A, 2011, 528(13-14): 4516 doi: 10.1016/j.msea.2011.02.032
    [19] Sun B H, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. Acta Mater, 2019, 164: 683 doi: 10.1016/j.actamat.2018.11.029
    [20] Scott C P, Amirkhiz B S, Pushkareva I, et al. New insights into martensite strength and the damage behavior of dual phase steels. Acta Mater, 2018, 159: 112 doi: 10.1016/j.actamat.2018.08.010
    [21] Ren Y Q, Xie Z J, Shang C J. Microstructure regulation and mechanical properties of low-carbon multiphase steels. J Univ Sci Technol Beijing, 2013, 35(5): 592

    任勇強, 謝振家, 尚成嘉. 低碳多相鋼的組織調控與力學性能. 北京科技大學學報, 2013, 35(5):592
    [22] Nouri A, Saghafian H, Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels. J Iron Steel Res Int, 2010, 17(5): 44
    [23] Zhao Z Z, Tong T T, Zhao A M, et al. Microstructure, mechanical properties and work hardening behavior of 1300 MPa grade 0.14C–2.72Mn–1.3Si steel. Acta Metall Sin, 2014, 50(10): 1153 doi: 10.11900/0412.1961.2014.00113

    趙征志, 佟婷婷, 趙愛民, 等. 1300 MPa級0.14C–2.72Mn–1.3Si鋼的顯微組織和力學性能及加工硬化行為. 金屬學報, 2014, 50(10):1153 doi: 10.11900/0412.1961.2014.00113
    [24] Seyedrezai H, Pilkey A K, Boyd J D. Effect of pre-IC annealing treatments on the final microstructure and work hardening behavior of a dual-phase steel. Mater Sci Eng A, 2014, 594: 178
    [25] Schemmann L, Zaefferer S, Raabe D, et al. Alloying effects on microstructure formation of dual phase steels. Acta Mater, 2015, 95: 386 doi: 10.1016/j.actamat.2015.05.005
    [26] Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des, 2012, 41: 370
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  3549
  • HTML全文瀏覽量:  1003
  • PDF下載量:  146
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-13
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回