-
摘要: 設計了不同相構成的超高強DH鋼,抗拉強度均大于1300 MPa,組織由鐵素體、馬氏體、殘留奧氏體和極少量碳化物構成。對比了不同相構成對超高強DH鋼力學性能和應變硬化行為等的影響,并深入研究了殘留奧氏體在超高強度DH鋼中的作用機制。結果表明:隨著馬氏體和殘留奧氏體體積分數的增大,鐵素體體積分數的減小,實驗鋼屈服和抗拉強度同時升高,而延伸率呈先增大后減小趨勢。軟韌相鐵素體體積分數的減小和硬相馬氏體體積分數的增大導致屈服強度和抗拉強度增加。相對于回火馬氏體,淬火馬氏體對強度的提升更顯著,在拉伸過程中轉變的殘留奧氏體的量是引起延伸率變化的主要原因,組織中顯著的帶狀組織會造成頸縮后延伸率的明顯降低。通過對應變硬化行為的分析表明,隨著真應變的增大,應變硬化率呈減小的趨勢,在真應變大于2%后的大范圍內,對于應變硬化率,DH1>DH2>DH3,主要與鐵素體體積分數有關;在真應變大于5.73%后,DH2鋼的應變硬化率高于DH1鋼和DH3鋼,主要與DH2鋼中更顯著的TRIP效應有關。除了殘留奧氏體體積分數,殘留奧氏體中的碳含量對TRIP效應同樣有顯著的影響。較高比例的硬相馬氏體組織結合適當比例的軟韌相鐵素體和殘留奧氏體有助于DH2鋼獲得最良好的強塑積13.17 GPa·%,其中屈服強度達880 MPa,抗拉強度達1497 MPa,均勻延伸率為6.71%,總伸長率為8.8%,頸縮后延伸率為2.09%,屈強比0.59。Abstract: In this study, ultra-high-strength DH steels with different phase compositions were designed, their tensile strengths were greater than 1300 MPa, and the multiphase microstructures contained ferrite, martensite, retained austenite, and small amounts of carbides. The effects of different phase compositions on the mechanical properties and strain hardening behaviors of the ultra-high-strength DH steels were compared, and the mechanism of the retained austenite in the ultra-high-strength DH steels was comprehensively studied. The results show that with the increase in the volume fraction of martensite and retained austenite and decrease in the ferrite volume fraction, the yield strength and tensile strength increase, whereas, the elongation rate first increase and then decrease. The decrease in the soft-phase ferrite volume fraction and increase in the volume fraction of the hard martensite phase led to an increase in yield strength and tensile strength. Compared with tempered martensite, quenched martensite could improve the strength more significantly. The retained austenite transformed in the tensile process was the main cause of the change in elongation. The remarkable banded structure in the microstructure will cause a significant decrease in elongation after necking. The analysis of the strain hardening behavior show that the strain hardening rate decrease with the increase in the true strain. When the true strain was greater than 2%, the strain hardening rate of the steels followed the order: DH1 > DH2 > DH3; this trend was mainly influenced by the ferrite volume fraction. The strain hardening rate of DH2 was higher than those of DH1 and DH3 when the true strain was greater than 5.73%, which was mainly related to the more significant transformation-induced plasticity (TRIP) effect in the DH2. In addition to the retained austenite volume fraction, the carbon content in the retained austenite also had a significant effect on the TRIP effect. The high proportion of the hard-phase martensite, appropriate proportion of the soft-ductile-phase ferrite, and retained austenite contributed to the DH2 steel having the greatest tensile strength and elongation (13.17 GPa·%); moreover, the yield strength was 880 MPa, tensile strength was 1497 MPa, uniform elongation was 6.71%, total elongation was 8.8%, elongation after necking was 2.09%, and yield ratio was 0.59.
-
圖 8 DH2實驗鋼中殘留奧氏體TEM照片。(a)塊狀殘留奧氏體明場像;(b)塊狀殘留奧氏體暗場像;(c)薄膜狀殘留奧氏體明場像;(d)薄膜狀殘留奧氏體暗場像
Figure 8. TEM images of retained austenite in DH2 steel: (a) bright-field image of block retained austenite; (b) dark-field image of block retained austenite; (c) bright-field image of retained austenite film; (d) dark field image of retained austenite film
表 1 實驗鋼的主要化學成分 (質量分數)
Table 1. Main chemical composition of the tested steel
% C Si Mn Cr Nb Fe 0.17–0.20 0.13–0.15 1.90–2.20 0.08–0.12 0.03–0.05 Bal. 表 2 實驗鋼的力學性能
Table 2. Mechanical properties of the tested steels
Steel Yield strength /
MPaUltimate tensile
strength / MPaUniform elongation /
%Total elongation /
%Post uniform
elongation / %Yield ratio Ultimate tensile strength×
Total elongation / (GPa·%)DH1 660 1385 6.19 6.73 0.54 0.48 9.32 DH2 880 1497 6.71 8.8 2.09 0.59 13.17 DH3 960 1534 5.12 6.76 1.64 0.63 10.40 259luxu-164 -
參考文獻
[1] Ding R, Dai Z B, Huang M X, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe–0.2C–8Mn–2Al medium Mn steel. Acta Mater, 2018, 147: 59 [2] Michiuchi M, Nambu S, Ishimoto Y, et al. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation. Acta Mater, 2009, 57(18): 5283 [3] Sun J J, Jiang T, Wang Y J, et al. Effect of grain refinement on high-carbon martensite transformation and its mechanical properties. Mater Sci Eng A, 2018, 726: 342 doi: 10.1016/j.msea.2018.04.095 [4] Sarkar R, Chandra S K, De P S, et al. Evaluation of a ductile tearing resistance of dual-phase DP 780 grade automotive steel sheet from essential work of fracture (EWF) tests. Theor Appl Fract Mech, 2019, 103: 102278 doi: 10.1016/j.tafmec.2019.102278 [5] Zhao Z Z, Tong T T, Liang J H, et al. Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng A, 2014, 618: 182 [6] Seo E J, Cho L, De Cooman B C. Application of quenching and partitioning (Q& P) processing to press hardening steel. Metall Mater Trans A, 2014, 45(9): 4022 [7] Kong H, Chao Q, Cai M H, et al. One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater Sci Eng A, 2017, 707: 538 doi: 10.1016/j.msea.2017.09.038 [8] Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater, 2013, 68(5): 321 doi: 10.1016/j.scriptamat.2012.11.003 [9] Morsdorf L, Jeannin O, Barbier D, et al. Multiple mechanism of lath martensite plasticity. Acta Mater, 2016, 121: 202 doi: 10.1016/j.actamat.2016.09.006 [10] Zhang B, Du L X, Dong Y, et al. Structure-property relationship in novel low carbon hot-rolled TRIP steels via thermo-mechanical controlled processing and coiling. Mater Sci Eng A, 2020, 771: 138643 doi: 10.1016/j.msea.2019.138643 [11] Maruyama H. X-ray measurement of retained austenite volume fraction. J Jpn Soc Heat Treat, 1977, 17: 198 [12] Sugimoto K, Sakaguchi J, Iida T, et al. Stretch-flangeability of a high-strength TRIP type bainitic sheet steel. ISIJ Int, 2000, 40(9): 92 [13] Zhu G M, Kuang S, Chen G J, et al. Effect of martensite on yield characteristics of cold rolled C–Si–Mn dual phase steel. J Mater Eng, 2011(4): 66 doi: 10.3969/j.issn.1001-4381.2011.04.014朱國明, 鄺霜, 陳貴江, 等. 馬氏體對C–Si–Mn冷軋雙相鋼屈服特性的影響. 材料工程, 2011(4):66 doi: 10.3969/j.issn.1001-4381.2011.04.014 [14] Akbarpour M R, Ekrami A. Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels. Mater Sci Eng A, 2008, 477(1-2): 306 [15] Sayed A A, Kheirandish S. Affect of the tempering temperature on the microstructure and mechanical properties of dual phase steels. Mater Sci Eng A, 2012, 532: 21 doi: 10.1016/j.msea.2011.10.056 [16] Zhu B, Liu Z, Wang Y N, et al. Application of a model for quenching and partitioning in hot stamping of high-strength steel. Metall Mater Trans A, 2018, 49(4): 1304 doi: 10.1007/s11661-018-4484-8 [17] Du C, Hoefnagels J P M, Vaes R, et al. Plasticity of lath martensite by sliding of substructure boundaries. Scripta Mater, 2016, 120: 37 [18] Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A, 2011, 528(13-14): 4516 doi: 10.1016/j.msea.2011.02.032 [19] Sun B H, Palanisamy D, Ponge D, et al. Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. Acta Mater, 2019, 164: 683 doi: 10.1016/j.actamat.2018.11.029 [20] Scott C P, Amirkhiz B S, Pushkareva I, et al. New insights into martensite strength and the damage behavior of dual phase steels. Acta Mater, 2018, 159: 112 doi: 10.1016/j.actamat.2018.08.010 [21] Ren Y Q, Xie Z J, Shang C J. Microstructure regulation and mechanical properties of low-carbon multiphase steels. J Univ Sci Technol Beijing, 2013, 35(5): 592任勇強, 謝振家, 尚成嘉. 低碳多相鋼的組織調控與力學性能. 北京科技大學學報, 2013, 35(5):592 [22] Nouri A, Saghafian H, Kheirandish S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels. J Iron Steel Res Int, 2010, 17(5): 44 [23] Zhao Z Z, Tong T T, Zhao A M, et al. Microstructure, mechanical properties and work hardening behavior of 1300 MPa grade 0.14C–2.72Mn–1.3Si steel. Acta Metall Sin, 2014, 50(10): 1153 doi: 10.11900/0412.1961.2014.00113趙征志, 佟婷婷, 趙愛民, 等. 1300 MPa級0.14C–2.72Mn–1.3Si鋼的顯微組織和力學性能及加工硬化行為. 金屬學報, 2014, 50(10):1153 doi: 10.11900/0412.1961.2014.00113 [24] Seyedrezai H, Pilkey A K, Boyd J D. Effect of pre-IC annealing treatments on the final microstructure and work hardening behavior of a dual-phase steel. Mater Sci Eng A, 2014, 594: 178 [25] Schemmann L, Zaefferer S, Raabe D, et al. Alloying effects on microstructure formation of dual phase steels. Acta Mater, 2015, 95: 386 doi: 10.1016/j.actamat.2015.05.005 [26] Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des, 2012, 41: 370 -