-
摘要: 通過對不同廠家或產線生產的相近成分和顯微組織的8種低合金工程結構鋼樣品進行中性鹽霧加速腐蝕試驗,結合成分測試、微觀組織分析、腐蝕產物分析及數據統計與計算擬合等方法,提出了評價低合金結構鋼耐蝕性的綜合耐蝕指數及其包含鋼材成分、夾雜物、組織及晶粒度等多因素的數學表達式。研究結果表明,低合金工程結構鋼的耐蝕性除與傳統的耐蝕指數I相關外,還受鋼中夾雜物、顯微組織、晶粒度等多種材料因素的耦合影響,其影響程度按從大到小排序依次為耐蝕合金元素所決定的耐蝕指數I、夾雜物總量、珠光體含量和晶粒度級別。綜合耐蝕指數Y可作為比耐蝕指數I指數更有效的低合金鋼耐蝕性判據,具有重要的工程應用價值。Abstract: Low-alloy engineering structural steel is widely used in many fields, because of its good mechanical and processing properties. The corrosion resistance of low-alloy engineering structural steel is related not only to chemical composition but also to microstructure, inclusions, grain size, and other factors. However, at present, the direct and fast criterion for evaluating the corrosion resistance of low-alloy structural steel, i.e., the corrosion resistance index I, in the ASTM Standard and China National Standards only involves the chemical composition of low-alloy structural steel and ignores the microstructure, inclusions, and grain size. In the literature on the corrosion resistance of low-alloy structural steel, the coupled effect of chemical composition and other material factors on corrosion resistance and the quantitative analysis of each factor have not been reported. Therefore, a new corrosion resistance index for low-alloy structural steel that includes more factors needs to be proposed. Through the neutral salt spray accelerated corrosion test of eight kinds of low-alloy engineering structural steels with similar composition and microstructure produced by different manufacturers or production lines, combined with the methods of composition test, microstructure analysis, corrosion product analysis, data statistics, and calculation fitting, a composite corrosion resistance index Y for low-alloy structural steel was proposed, and a quantitative index formula containing several factors, including chemical composition, inclusions, microstructure, and grain size, was established. Results show that the corrosion resistance of low-alloy structural steel is affected by the coupling of many material factors, not only the traditional corrosion resistance index I but also inclusions, microstructure, and grain size. The degree of influence is in the order of corrosion resistance index I determined by corrosion-resistant alloy elements, total inclusions, pearlite content, and grain size. The composite corrosion resistance index can be used as an effective criterion for the corrosion resistance of low-alloy structural steel and is of significance in engineering applications.
-
表 1 試驗鋼樣品的化學成分(質量分數)
Table 1. Chemical composition of the steel samples
% Sample C Si Mn P S Cr Ni Cu V Ti Nb Fe 1# 0.12 0.19 1.43 0.014 0.003 0.033 0.010 0.015 0.005 0.019 0.001 Bal 2# 0.18 0.20 1.28 0.015 0.003 0.028 0.013 0.024 0.005 0.035 0.001 Bal 3# 0.17 0.24 1.17 0.015 0.002 0.035 0.010 0.014 0.004 0.010 0.010 Bal 4# 0.18 0.24 0.91 0.010 0.004 0.026 0.015 0.019 0.003 0.0024 0.009 Bal 5# 0.16 0.19 1.21 0.011 0.002 0.043 0.045 0.020 0.004 0.010 0.001 Bal 6# 0.14 0.15 1.48 0.010 0.006 0.016 0.006 0.008 0.005 0.015 0.002 Bal 7# 0.18 0.23 0.91 0.014 0.007 0.030 0.011 0.012 0.003 0.0028 0.010 Bal 8# 0.18 0.23 0.92 0.014 0.008 0.030 0.011 0.012 0.003 0.0028 0.010 Bal 表 2 八種試驗鋼樣品的耐蝕指數I值
Table 2. Corrosion resistance index of the steel samples
1# 2# 3# 4# 5# 6# 7# 8# 0.99 1.24 1.05 1.10 1.20 0.64 0.97 0.97 表 3 8種試驗鋼樣品的質量損失率
Table 3. Mass loss ratio of the steel samples
% 1# 2# 3# 4# 5# 6# 7# 8# 1.11 2.02 2.80 2.84 3.00 3.02 3.06 3.29 表 4 八種鋼樣品晶粒度級別及組織含量
Table 4. Grain size and percentage of pearlite/ferrite
Sample Grain size grade/
Grain diameter/μmArea percentage
of pearlite/%Area percentage
of ferrite/%1# 9/17 20.13 79.87 2# 8.5/20 24.22 75.78 3# 9.5/13 22.29 67.72 4# 10/12 24.73 75.27 5# 8.5/19 38.82 61.18 6# 10.5/10 37.29 62.71 7# 9/16 23.14 76.86 8# 9/15 38.49 61.51 表 5 8種試驗鋼樣品夾雜物評級及夾雜物所占面積
Table 5. Inclusion grade and percentage of the inclusion area of the steel samples
Sample Inclusion grade Area percentage of inclusion /% 1# C 0.5e+D 1 0.05630 2# C 0.5e+D 0.5 0.04055 3# C 1e+D 1e 0.12769 4# A 0.5+C 1e+D 1 0.11457 5# C 0.5+D 1 0.05512 6# C 1+D 1.5 0.08360 7# C 1+D 0.5 0.08123 8# A 0.5+C 1+D 0.5 0.07664 259luxu-164 -
參考文獻
[1] Li X G. Corrosion-resistant Low Alloy Steel. Beijing: Metallurgical Industry Press, 2017李曉剛. 耐蝕低合金結構鋼. 北京: 冶金工業出版社, 2017 [2] Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros Sci, 2020, 164: 108345 doi: 10.1016/j.corsci.2019.108345 [3] Zhang D Z, Gao X H, Du Y, et al. Effect of microstructure refinement on hydrogen-induced damage behavior of low alloy high strength steel for flexible riser. Mater Sci Eng A, 2019, 765: 138278 [4] Li X C, Li X D, Wang X L, et al. Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel. Chin J Eng, 2017, 39(5): 643李秀程, 李學達, 王學林, 等. 低合金鋼焊接熱影響區的微觀組織和韌性研究進展. 工程科學學報, 2017, 39(5):643 [5] Ma B, Peng Y, Liu Y F, et al. Dynamic recrystallization kinetics model of low-alloy steel Q345B. Trans Mater Heat Treat, 2010, 31(4): 141馬博, 彭艷, 劉云飛, 等. 低合金鋼Q345B動態再結晶動力學模型. 材料熱處理學報, 2010, 31(4):141 [6] Yin S, Zhu H D. Development of yield strength 750 MPa HSLA steel for container. Spec Steel, 2019, 40(1): 16 doi: 10.3969/j.issn.1003-8620.2019.01.005殷勝, 朱紅丹. 屈服強度750 MPa低合金鋼高強度集裝箱用鋼的開發. 特殊鋼, 2019, 40(1):16 doi: 10.3969/j.issn.1003-8620.2019.01.005 [7] Ma H C, Chen L H, Zhao J B, et al. Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere. Mater Sci Eng A, 2020, 773: 138884 doi: 10.1016/j.msea.2019.138884 [8] Wang Z H, Wu J S, Li J, et al. Effects of niobium on the mechanical properties and corrosion behavior of simulated weld HAZ of HSLA steel. Metall Mater Trans A, 2018, 49(1): 187 doi: 10.1007/s11661-017-4391-4 [9] Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline. Chin J Eng, 2018, 40(5): 594程遠鵬, 白羽, 李自力, 等. 集輸管道CO2/油/水環境中X65鋼的腐蝕特征. 工程科學學報, 2018, 40(5):594 [10] Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere. J Chin Soc Corros Prot, 2019, 39(3): 274 doi: 10.11902/1005.4537.2018.129孫永偉, 鐘玉平, 王靈水, 等. 低合金高強度鋼的耐模擬工業大氣腐蝕行為研究. 中國腐蝕與防護學報, 2019, 39(3):274 doi: 10.11902/1005.4537.2018.129 [11] Sarkar P P, Kumar P, Manna M K, et al. Microstructural influence on the electrochemical corrosion behavior of dual-phase steels in 3.5% NaCl solution. Mater Lett, 2005, 59(19-20): 2488 doi: 10.1016/j.matlet.2005.03.030 [12] Qiao Q Q, Lu L, Fan E D, et al. Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater. Int J Hydrogen Energy, 2019, 44(51): 27962 doi: 10.1016/j.ijhydene.2019.08.259 [13] Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corros Sci, 2018, 139: 83 doi: 10.1016/j.corsci.2018.04.041 [14] Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials. Chin J Eng, 2019, 41(7): 929陳恒, 盧琳. 殘余應力對金屬材料局部腐蝕行為的影響. 工程科學學報, 2019, 41(7):929 [15] Guo J, Yang S W, Shang C J, et al. Influence of carbon content and microstructure on corrosion behavior of low alloy steels in a Cl- containing environment. Corros Sci, 2009, 51(2): 242 doi: 10.1016/j.corsci.2008.10.025 [16] Schino A D, Barteri M, Kenny J M. Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels. J Mater Sci, 2003, 38(15): 3257 doi: 10.1023/A:1025181820252 [17] Zhang F, Chen H F, Chai F, et al. Effect of inclusions on corrosion resistance of Cr?Ni high-strength steels. J Iron Steel Res, 2017, 29(11): 945張峰, 陳惠芬, 柴鋒, 等. 夾雜物對Cr?Ni系高強度鋼耐蝕性能的影響. 鋼鐵研究學報, 2017, 29(11):945 [18] Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros Sci, 2018, 138: 96 doi: 10.1016/j.corsci.2018.04.007 [19] Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001 [20] American Society for Testing Material. ASTM G101-04(2010) Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low Alloy Steels. Pennsylvania: American Society for Testing and Materials, 2010 [21] General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 4171—2008 Atmospheric Corrosion Resisting Structural Steel. Beijing: China Standards Press, 2008中華人民共和國國家質量監督檢驗總局. GB/T 4171—2008耐候結構鋼. 北京: 中國標準出版社, 2008 [22] General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 714—2015 Structural Steel for Bridge. Beijing: China Standards Press, 2015中華人民共和國國家質量監督檢驗總局. GB/T 714—2015橋梁用結構鋼. 北京: 中國標準出版社, 2015 [23] Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres. Corros Sci, 2017, 115: 135 doi: 10.1016/j.corsci.2016.11.016 [24] Su H Y, Wei S C, Liang Y, et al. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel. Chin J Eng, 2019, 41(8): 1029蘇宏藝, 魏世丞, 梁義, 等. 靜水壓與溶解氧耦合作用對低合金高強鋼腐蝕電化學行為的影響. 工程科學學報, 2019, 41(8):1029 [25] Kamimura T, Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros Sci, 2001, 43(3): 429 doi: 10.1016/S0010-938X(00)00098-6 [26] Liu C, Cheng X Q, Dai Z Y, et al. Synergistic effect of Al2O3 inclusion and pearlite on the localized corrosion evolution process of carbon steel in marine environment. Materials, 2018, 11(11): 2277 doi: 10.3390/ma11112277 -