<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

低合金結構鋼腐蝕的影響因素及其耐蝕性判據

趙起越 范益 范恩點 趙柏杰 黃運華 程學群 李曉剛

趙起越, 范益, 范恩點, 趙柏杰, 黃運華, 程學群, 李曉剛. 低合金結構鋼腐蝕的影響因素及其耐蝕性判據[J]. 工程科學學報, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002
引用本文: 趙起越, 范益, 范恩點, 趙柏杰, 黃運華, 程學群, 李曉剛. 低合金結構鋼腐蝕的影響因素及其耐蝕性判據[J]. 工程科學學報, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002
ZHAO Qi-yue, FAN Yi, FAN En-dian, ZHAO Bai-jie, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Influence factors and corrosion resistance criterion of low-alloy structural steel[J]. Chinese Journal of Engineering, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002
Citation: ZHAO Qi-yue, FAN Yi, FAN En-dian, ZHAO Bai-jie, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Influence factors and corrosion resistance criterion of low-alloy structural steel[J]. Chinese Journal of Engineering, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002

低合金結構鋼腐蝕的影響因素及其耐蝕性判據

doi: 10.13374/j.issn2095-9389.2020.01.10.002
基金項目: 國家重點研發計劃資助項目(2016YFB0300604);國家自然科學基金資助項目(51971033)
詳細信息
    通訊作者:

    E-mail: huangyh@mater.ustb.edu.cn

  • 中圖分類號: TG172.3

Influence factors and corrosion resistance criterion of low-alloy structural steel

More Information
  • 摘要: 通過對不同廠家或產線生產的相近成分和顯微組織的8種低合金工程結構鋼樣品進行中性鹽霧加速腐蝕試驗,結合成分測試、微觀組織分析、腐蝕產物分析及數據統計與計算擬合等方法,提出了評價低合金結構鋼耐蝕性的綜合耐蝕指數及其包含鋼材成分、夾雜物、組織及晶粒度等多因素的數學表達式。研究結果表明,低合金工程結構鋼的耐蝕性除與傳統的耐蝕指數I相關外,還受鋼中夾雜物、顯微組織、晶粒度等多種材料因素的耦合影響,其影響程度按從大到小排序依次為耐蝕合金元素所決定的耐蝕指數I、夾雜物總量、珠光體含量和晶粒度級別。綜合耐蝕指數Y可作為比耐蝕指數I指數更有效的低合金鋼耐蝕性判據,具有重要的工程應用價值。

     

  • 圖  1  8種試驗鋼樣品鹽霧試驗后的宏觀形貌。(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7#;(h)8#

    Figure  1.  Macromorphologies of the steel samples after the salt spray test: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g)7#; (h) 8#

    圖  2  8種試驗鋼樣品銹層X射線衍射圖譜

    Figure  2.  XRD patterns of the corrosion products formed on the steel samples

    圖  3  8種試驗鋼樣品除銹后的微觀形貌。(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7#;(h)8#

    Figure  3.  Micromorphologies of the steel samples after rust removal: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g) 7#; (h) 8#

    圖  4  8種試驗鋼樣品金相組織。(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7#;(h)8#

    Figure  4.  Microstructures of the steel samples: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g) 7#; (h) 8#

    圖  5  8種試驗鋼樣品夾雜物形貌。(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7#;(h)8#

    Figure  5.  Morphologies of the inclusions in the steel samples: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g) 7#; (h) 8#

    圖  6  8種試驗鋼鹽霧試驗后的失重率與耐蝕性指數、珠光體面積百分比、晶粒度級別和夾雜物面積百分比的關系

    Figure  6.  Relationship between the mass loss ratio and the corrosion resistance index, area percentage of pearlite, grain grade, and area percentage of inclusions

    表  1  試驗鋼樣品的化學成分(質量分數)

    Table  1.   Chemical composition of the steel samples %

    SampleCSiMnPSCrNiCuVTiNbFe
    1#0.120.191.430.0140.0030.0330.0100.0150.0050.0190.001Bal
    2#0.180.201.280.0150.0030.0280.0130.0240.0050.0350.001Bal
    3#0.170.241.170.0150.0020.0350.0100.0140.0040.0100.010Bal
    4#0.180.240.910.0100.0040.0260.0150.0190.0030.00240.009Bal
    5#0.160.191.210.0110.0020.0430.0450.0200.0040.0100.001Bal
    6#0.140.151.480.0100.0060.0160.0060.0080.0050.0150.002Bal
    7#0.180.230.910.0140.0070.0300.0110.0120.0030.00280.010Bal
    8#0.180.230.920.0140.0080.0300.0110.0120.0030.00280.010Bal
    下載: 導出CSV

    表  2  八種試驗鋼樣品的耐蝕指數I

    Table  2.   Corrosion resistance index of the steel samples

    1#2#3#4#5#6#7#8#
    0.991.241.051.101.200.640.970.97
    下載: 導出CSV

    表  3  8種試驗鋼樣品的質量損失率

    Table  3.   Mass loss ratio of the steel samples %

    1#2#3#4#5#6#7#8#
    1.112.022.802.843.003.023.063.29
    下載: 導出CSV

    表  4  八種鋼樣品晶粒度級別及組織含量

    Table  4.   Grain size and percentage of pearlite/ferrite

    SampleGrain size grade/
    Grain diameter/μm
    Area percentage
    of pearlite/%
    Area percentage
    of ferrite/%
    1#9/1720.1379.87
    2#8.5/2024.2275.78
    3#9.5/1322.2967.72
    4#10/1224.7375.27
    5#8.5/1938.8261.18
    6#10.5/1037.2962.71
    7#9/1623.1476.86
    8#9/1538.4961.51
    下載: 導出CSV

    表  5  8種試驗鋼樣品夾雜物評級及夾雜物所占面積

    Table  5.   Inclusion grade and percentage of the inclusion area of the steel samples

    SampleInclusion gradeArea percentage of inclusion /%
    1#C 0.5e+D 10.05630
    2#C 0.5e+D 0.50.04055
    3#C 1e+D 1e0.12769
    4#A 0.5+C 1e+D 10.11457
    5#C 0.5+D 10.05512
    6#C 1+D 1.50.08360
    7#C 1+D 0.50.08123
    8#A 0.5+C 1+D 0.50.07664
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li X G. Corrosion-resistant Low Alloy Steel. Beijing: Metallurgical Industry Press, 2017

    李曉剛. 耐蝕低合金結構鋼. 北京: 冶金工業出版社, 2017
    [2] Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros Sci, 2020, 164: 108345 doi: 10.1016/j.corsci.2019.108345
    [3] Zhang D Z, Gao X H, Du Y, et al. Effect of microstructure refinement on hydrogen-induced damage behavior of low alloy high strength steel for flexible riser. Mater Sci Eng A, 2019, 765: 138278
    [4] Li X C, Li X D, Wang X L, et al. Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel. Chin J Eng, 2017, 39(5): 643

    李秀程, 李學達, 王學林, 等. 低合金鋼焊接熱影響區的微觀組織和韌性研究進展. 工程科學學報, 2017, 39(5):643
    [5] Ma B, Peng Y, Liu Y F, et al. Dynamic recrystallization kinetics model of low-alloy steel Q345B. Trans Mater Heat Treat, 2010, 31(4): 141

    馬博, 彭艷, 劉云飛, 等. 低合金鋼Q345B動態再結晶動力學模型. 材料熱處理學報, 2010, 31(4):141
    [6] Yin S, Zhu H D. Development of yield strength 750 MPa HSLA steel for container. Spec Steel, 2019, 40(1): 16 doi: 10.3969/j.issn.1003-8620.2019.01.005

    殷勝, 朱紅丹. 屈服強度750 MPa低合金鋼高強度集裝箱用鋼的開發. 特殊鋼, 2019, 40(1):16 doi: 10.3969/j.issn.1003-8620.2019.01.005
    [7] Ma H C, Chen L H, Zhao J B, et al. Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere. Mater Sci Eng A, 2020, 773: 138884 doi: 10.1016/j.msea.2019.138884
    [8] Wang Z H, Wu J S, Li J, et al. Effects of niobium on the mechanical properties and corrosion behavior of simulated weld HAZ of HSLA steel. Metall Mater Trans A, 2018, 49(1): 187 doi: 10.1007/s11661-017-4391-4
    [9] Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline. Chin J Eng, 2018, 40(5): 594

    程遠鵬, 白羽, 李自力, 等. 集輸管道CO2/油/水環境中X65鋼的腐蝕特征. 工程科學學報, 2018, 40(5):594
    [10] Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere. J Chin Soc Corros Prot, 2019, 39(3): 274 doi: 10.11902/1005.4537.2018.129

    孫永偉, 鐘玉平, 王靈水, 等. 低合金高強度鋼的耐模擬工業大氣腐蝕行為研究. 中國腐蝕與防護學報, 2019, 39(3):274 doi: 10.11902/1005.4537.2018.129
    [11] Sarkar P P, Kumar P, Manna M K, et al. Microstructural influence on the electrochemical corrosion behavior of dual-phase steels in 3.5% NaCl solution. Mater Lett, 2005, 59(19-20): 2488 doi: 10.1016/j.matlet.2005.03.030
    [12] Qiao Q Q, Lu L, Fan E D, et al. Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater. Int J Hydrogen Energy, 2019, 44(51): 27962 doi: 10.1016/j.ijhydene.2019.08.259
    [13] Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corros Sci, 2018, 139: 83 doi: 10.1016/j.corsci.2018.04.041
    [14] Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials. Chin J Eng, 2019, 41(7): 929

    陳恒, 盧琳. 殘余應力對金屬材料局部腐蝕行為的影響. 工程科學學報, 2019, 41(7):929
    [15] Guo J, Yang S W, Shang C J, et al. Influence of carbon content and microstructure on corrosion behavior of low alloy steels in a Cl- containing environment. Corros Sci, 2009, 51(2): 242 doi: 10.1016/j.corsci.2008.10.025
    [16] Schino A D, Barteri M, Kenny J M. Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels. J Mater Sci, 2003, 38(15): 3257 doi: 10.1023/A:1025181820252
    [17] Zhang F, Chen H F, Chai F, et al. Effect of inclusions on corrosion resistance of Cr?Ni high-strength steels. J Iron Steel Res, 2017, 29(11): 945

    張峰, 陳惠芬, 柴鋒, 等. 夾雜物對Cr?Ni系高強度鋼耐蝕性能的影響. 鋼鐵研究學報, 2017, 29(11):945
    [18] Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros Sci, 2018, 138: 96 doi: 10.1016/j.corsci.2018.04.007
    [19] Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001
    [20] American Society for Testing Material. ASTM G101-04(2010) Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low Alloy Steels. Pennsylvania: American Society for Testing and Materials, 2010
    [21] General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 4171—2008 Atmospheric Corrosion Resisting Structural Steel. Beijing: China Standards Press, 2008

    中華人民共和國國家質量監督檢驗總局. GB/T 4171—2008耐候結構鋼. 北京: 中國標準出版社, 2008
    [22] General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 714—2015 Structural Steel for Bridge. Beijing: China Standards Press, 2015

    中華人民共和國國家質量監督檢驗總局. GB/T 714—2015橋梁用結構鋼. 北京: 中國標準出版社, 2015
    [23] Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres. Corros Sci, 2017, 115: 135 doi: 10.1016/j.corsci.2016.11.016
    [24] Su H Y, Wei S C, Liang Y, et al. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel. Chin J Eng, 2019, 41(8): 1029

    蘇宏藝, 魏世丞, 梁義, 等. 靜水壓與溶解氧耦合作用對低合金高強鋼腐蝕電化學行為的影響. 工程科學學報, 2019, 41(8):1029
    [25] Kamimura T, Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros Sci, 2001, 43(3): 429 doi: 10.1016/S0010-938X(00)00098-6
    [26] Liu C, Cheng X Q, Dai Z Y, et al. Synergistic effect of Al2O3 inclusion and pearlite on the localized corrosion evolution process of carbon steel in marine environment. Materials, 2018, 11(11): 2277 doi: 10.3390/ma11112277
  • 加載中
圖(6) / 表(5)
計量
  • 文章訪問數:  2082
  • HTML全文瀏覽量:  924
  • PDF下載量:  127
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-10
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回