<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

全尾砂高濃度膠結充填的環管試驗

王洪江 王小林 寇云鵬 吳再海 彭青松

王洪江, 王小林, 寇云鵬, 吳再海, 彭青松. 全尾砂高濃度膠結充填的環管試驗[J]. 工程科學學報, 2021, 43(2): 215-222. doi: 10.13374/j.issn2095-9389.2020.01.09.002
引用本文: 王洪江, 王小林, 寇云鵬, 吳再海, 彭青松. 全尾砂高濃度膠結充填的環管試驗[J]. 工程科學學報, 2021, 43(2): 215-222. doi: 10.13374/j.issn2095-9389.2020.01.09.002
WANG Hong-jiang, WANG Xiao-lin, KOU Yun-peng, WU Zai-hai, PENG Qing-song. Loop test study on the high-concentration cemented filling of full tailings[J]. Chinese Journal of Engineering, 2021, 43(2): 215-222. doi: 10.13374/j.issn2095-9389.2020.01.09.002
Citation: WANG Hong-jiang, WANG Xiao-lin, KOU Yun-peng, WU Zai-hai, PENG Qing-song. Loop test study on the high-concentration cemented filling of full tailings[J]. Chinese Journal of Engineering, 2021, 43(2): 215-222. doi: 10.13374/j.issn2095-9389.2020.01.09.002

全尾砂高濃度膠結充填的環管試驗

doi: 10.13374/j.issn2095-9389.2020.01.09.002
基金項目: 國家“十三五”重點研發計劃資助項目(2017YFC0602903)
詳細信息
    通訊作者:

    E-mail:kouyunpeng@126.com

  • 中圖分類號: TD926.4

Loop test study on the high-concentration cemented filling of full tailings

More Information
  • 摘要: 為探明全尾砂高濃度充填料漿的灰砂比、濃度和流速對管道阻力的影響規律,預測工業充填管道阻力,開展中試規模環管試驗。根據管壁切應力與剪切速率關系建立管道阻力預測模型,利用灰關聯法分析各因素對管道阻力的影響強弱,通過線性回歸獲取料漿流變參數。結果表明,管道阻力對料漿濃度的變化最為敏感,隨濃度增加成二次函數增長。料漿流速對管道阻力的影響僅次于濃度,層流輸送時管道阻力隨流速增加成線性增長。灰砂比對管道阻力的影響有雙重性,灰砂質量比小于1∶8時膠凝材料的黏結作用占主導并增加管道阻力,反之膠凝材料的潤滑作用占主導并降低管道阻力。環管試驗得到的料漿流變參數明顯小于流變儀測試結果且更接近工程實際,管道阻力預測模型的誤差小于10%。

     

  • 圖  1  環管試驗材料粒徑分布

    Figure  1.  Particle size distribution of materials for the loop test

    圖  2  環管試驗系統. (a)環管系統簡圖;(b)料漿制備及泵送設備

    Figure  2.  Loop test system: (a) schematic of the loop system; (b) mixing and pumping equipments

    圖  3  料漿質量分數對管道阻力的影響

    Figure  3.  Influence of mass fraction of slurry on pipe resistance

    圖  4  料漿灰砂比對管道阻力的影響

    Figure  4.  Influence of cement-sand ratio of slurry on pipe resistance

    圖  5  料漿流速對管道阻力的影響

    Figure  5.  Influence of slurry velocity on pipe resistance

    表  1  關聯度計算結果

    Table  1.   Calculation results of correlation degree

    Group, k${\xi _1}(k)$${\xi _{\rm{2}}}(k)$${\xi _{\rm{3}}}(k)$Group, k${\xi _1}(k)$${\xi _{\rm{2}}}(k)$${\xi _{\rm{3}}}(k)$Group, k${\xi _1}(k)$${\xi _{\rm{2}}}(k)$${\xi _{\rm{3}}}(k)$
    10.45060.45060.663170.45090.78490.3875330.46120.58280.4651
    20.46940.46940.8894180.42880.86220.4773340.44300.61470.6240
    30.48840.48840.8134190.41640.91740.5909350.42860.64490.8168
    40.51050.51050.6062200.37930.87340.8088360.39820.72840.7870
    50.39720.52390.7093210.80240.62190.6431370.59320.5670.6063
    60.40860.54380.9225220.74900.65830.9257380.56350.59710.8785
    70.42280.56940.6783230.69610.70550.7971390.54030.62560.8064
    80.44550.61130.4935240.63950.77490.5445400.50890.67380.545
    90.34430.68710.9522250.89630.63940.8783410.7590.61010.8276
    100.35430.72840.653260.96200.67210.7413420.71430.64250.7746
    110.36000.75270.4965270.97060.70520.5768430.68030.67260.6100
    120.36500.77490.3828280.85940.77840.4365440.63890.71870.4438
    130.33331.00000.8209290.80880.95520.9485450.86780.92640.9755
    140.33980.94590.5738300.85730.97760.6613460.83550.96610.6860
    150.35120.86780.4716310.89630.93140.5372470.78950.96640.4940
    160.35430.84910.3736320.95300.80720.4095480.72410.87030.3818
    下載: 導出CSV

    表  2  充填料漿流變參數

    Table  2.   Rheological parameters of the filling slurry

    Cement-sand ratioMass fraction / %Loop test methodRheometer method
    Yield stress / PaViscosity coefficient / (Pa·s)Yield stress / PaViscosity coefficient / (Pa·s)
    1∶475.814.350.1031.420.25
    73.79.340.0926.110.22
    70.84.530.0516.490.16
    68.90.680.0414.390.09
    1∶1075.330.680.1345.020.30
    73.110.730.1031.210.22
    71.73.620.0921.220.18
    69.50.910.0818.510.15
    1∶1575.423.170.1136.390.28
    73.914.310.0926.700.26
    72.26.480.0819.130.21
    69.73.760.0714.360.19
    下載: 導出CSV

    表  3  管道阻力預測值與實測值對比

    Table  3.   Comparison of predicted and measured pipe resistance

    Cement–
    sand ratio
    Mass fraction/%Flow velocity/
    (m·s?1)
    Measured pipe resistance/
    (kPa·m–1)
    Predicted
    pipe resistance/
    (kPa·m?1)
    Error/
    %
    Cement?
    sand ratio
    Mass fraction/%Flow velocity/
    (m·s?1)
    Measured pipe resistance/
    (kPa·m?1)
    Predicted pipe resistance/
    (kPa·m?1)
    Error/%
    1∶475.81.451.741.72?1.11∶1073.11.881.771.854.5
    1.711.881.85?1.62.271.972.064.6
    1.952.011.98?1.571.71.360.900.81?10.0
    2.232.152.13?0.91.671.020.95?6.9
    73.71.341.271.323.91.921.131.07?5.4
    1.651.381.465.82.301.341.25?6.8
    1.911.511.595.31∶1575.41.312.352.33?0.9
    2.281.701.763.51.662.492.531.6
    70.81.380.660.65?1.51.912.612.682.7
    1.690.790.74?6.32.282.892.890.0
    1.980.860.81?5.873.91.321.591.653.8
    2.330.920.90?2.21.651.731.804.0
    1∶1075.31.303.002.91?3.01.901.851.923.8
    1.633.183.14?1.32.292.032.113.9
    1.893.293.320.972.21.361.010.98?3.0
    2.273.663.58?2.21.681.141.12?1.8
    73.11.331.471.566.11.911.251.21?3.2
    1.641.611.737.52.301.401.38?1.4
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang K, Yang P, Karen H E, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526

    王昆, 楊鵬, Karen Hudson-Edwards, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526
    [2] Liu X H, Wang G L, Zhao Z B, et al. Study on the flow resistance characteristics of structure fluid backfilling slurry based on loop pipe testing. China Molybdenum Ind, 2016, 40(5): 20

    劉曉輝, 王國立, 趙占斌, 等. 結構流充填料漿環管試驗及其阻力特性研究. 中國鉬業, 2016, 40(5):20
    [3] Yang C, Guo L J, Zhang L, et al. Study of the rheological characteristics of copper tailings and calculation of resistance in pipeline transportation. Chin J Eng, 2017, 39(5): 663

    楊超, 郭利杰, 張林, 等. 銅尾礦流變特性與管道輸送阻力計算. 工程科學學報, 2017, 39(5):663
    [4] Yang Z Q, Wang Y Q, Gao Q, et al. Pipe-loop test for transportation characteristics of paste in Jinchuan mine and corresponding drag reduction technology. Min Metall Eng, 2016, 36(5): 22 doi: 10.3969/j.issn.0253-6099.2016.05.006

    楊志強, 王永前, 高謙, 等. 金川膏體管道輸送特性環管試驗與減阻技術. 礦冶工程, 2016, 36(5):22 doi: 10.3969/j.issn.0253-6099.2016.05.006
    [5] Wu A X, Ruan Z E, Wang Y M, et al. Simulation of long-distance pipeline transportation properties of whole-tailings paste with high sliming. J Cent South Univ, 2018, 25(1): 141 doi: 10.1007/s11771-018-3724-9
    [6] Wang S Y, Wu A X, Yin S H, et al. Influence factors of pressure loss in pipeline transportation of paste slurry. Chin J Eng, 2015, 37(1): 7

    王少勇, 吳愛祥, 尹升華, 等. 膏體料漿管道輸送壓力損失的影響因素. 工程科學學報, 2015, 37(1):7
    [7] Li J, Xiao C C, Jiang J, et al. Thixotropic properties of paste pumping effect on pipeline resistance. China Min Mag, 2017, 26(2): 283

    李俊, 肖崇春, 姜寄, 等. 泵送膏體觸變特性對管道阻力的影響. 中國礦業, 2017, 26(2):283
    [8] Liu X H. Macro-micro analysis and test method of rheological behavior of paste tailings. Met Mine, 2018(5): 7

    劉曉輝. 膏體尾礦流變行為的宏細觀分析及其測定方法. 金屬礦山, 2018(5):7
    [9] Liu X H, Wu A X, Yao J, et al. Resistance characteristic and approximate calculation of paste tailings slip flow inside pipe. Chin J Nonferrous Met, 2019, 29(10): 2403

    劉曉輝, 吳愛祥, 姚建, 等. 膏體尾礦管內滑移流動阻力特性及其近似計算方法. 中國有色金屬學報, 2019, 29(10):2403
    [10] Chen Q S, Zhang Q L, Wang X M, et al. Pipeline hydraulic gradient model of paste-like unclassified tailings backfill slurry. J China Univ Min Technol, 2016, 45(5): 901

    陳秋松, 張欽禮, 王新民, 等. 全尾砂似膏體管輸水力坡度計算模型研究. 中國礦業大學學報, 2016, 45(5):901
    [11] Steward N R, Allen G, Tiedermann K. Paste backfill reticulation optimisation using high shear mixing at DeGrussa Mine // Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings. Perth, 2019: 411
    [12] Chen D D, Jiang X G, Lv S, et al. Rheological properties and stability of lignite washery tailing suspensions. Fuel, 2015, 141: 214 doi: 10.1016/j.fuel.2014.10.067
    [13] Boger D V. Rheology of slurries and environmental impacts in the mining industry. Ann Rev Chem Biomol Eng, 2013, 4: 239 doi: 10.1146/annurev-chembioeng-061312-103347
    [14] Senapati P K, Mishra B K. Feasibility studies on pipeline disposal of concentrated copper tailings slurry for waste minimization. J Inst Eng India, 2017, 98(3): 277
    [15] Bharathan B, McGuinness M, Kuhar S, et al. Pressure loss and friction factor in non-Newtonian mine paste backfill: Modelling, loop test and mine field data. Powder Technol, 2019, 344: 443 doi: 10.1016/j.powtec.2018.12.029
    [16] Hou Y B, Zhang X, Li P, et al. Mechanical properties and nondestructive testing of cemented mass of unclassified tailings under freeze-thaw cycles. Chin J Eng, 2019, 41(11): 1433

    侯運炳, 張興, 李攀, 等. 凍融循環對全尾砂固結體力學性能影響及無損檢測研究. 工程科學學報, 2019, 41(11):1433
    [17] Li L, Zhang J, Hassani F, et al. Slump tests for yield stress of paste tailings. Met Mine, 2017(1): 30 doi: 10.3969/j.issn.1001-1250.2017.01.007

    李亮, 張柬, Hassani Ferri, 等. 膏體尾礦屈服應力的塌落度試驗研究. 金屬礦山, 2017(1):30 doi: 10.3969/j.issn.1001-1250.2017.01.007
    [18] Li X B, Liu B, Yao J R, et al. Theory and practice of green mine backfill with whole phosphate waste. Chin J Nonferrous Met, 2018, 28(9): 1845

    李夕兵, 劉冰, 姚金蕊, 等. 全磷廢料綠色充填理論與實踐. 中國有色金屬學報, 2018, 28(9):1845
    [19] Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168

    程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168
    [20] Pullum L, Boger D V, Sofra F. Hydraulic mineral waste transport and storage. Ann Rev Fluid Mech, 2018, 50: 157 doi: 10.1146/annurev-fluid-122316-045027
    [21] Cruz N, Forster J, Bobicki E R. Slurry rheology in mineral processing unit operations: A critical review. Can J Chem Eng, 2019, 97(7): 2102 doi: 10.1002/cjce.23476
    [22] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Cent South Univ Sci Technol, 2018, 49(10): 2519 doi: 10.11817/j.issn.1672-7207.2018.10.019

    王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519 doi: 10.11817/j.issn.1672-7207.2018.10.019
    [23] Yang Q P, Wang Y M, Wang Y, et al. Experimental study on paste filling loop of Chambisch copper mine. Min Technol, 2016, 16(5): 21 doi: 10.3969/j.issn.1671-2900.2016.05.008

    楊清平, 王貽明, 王勇, 等. 謙比希銅礦膏體充填環管實驗研究. 采礦技術, 2016, 16(5):21 doi: 10.3969/j.issn.1671-2900.2016.05.008
    [24] Ren H G, Tan Z Y, Wang H J. Sensitivity analysis of rockmass parameters in stope based on the OED-GRA evaluation model. Nonferrous Met (Mine Sect), 2017, 69(1): 63

    任紅崗, 譚卓英, 王海軍. 基于OED-GRA評價模型的采場巖體參數敏感性分析. 有色金屬(礦山部分), 2017, 69(1):63
    [25] Qiu J P, Yang L, Sun X G, et al. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill. Minerals, 2017, 7(4): 58 doi: 10.3390/min7040058
    [26] Bauer E, de Sousa J G G, Guimar?es A, et al. Study of the laboratory Vane test on mortars. Build Environ, 2007, 42(1): 86 doi: 10.1016/j.buildenv.2005.08.016
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  1777
  • HTML全文瀏覽量:  789
  • PDF下載量:  93
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-09
  • 刊出日期:  2021-02-26

目錄

    /

    返回文章
    返回