-
摘要: 為探明全尾砂高濃度充填料漿的灰砂比、濃度和流速對管道阻力的影響規律,預測工業充填管道阻力,開展中試規模環管試驗。根據管壁切應力與剪切速率關系建立管道阻力預測模型,利用灰關聯法分析各因素對管道阻力的影響強弱,通過線性回歸獲取料漿流變參數。結果表明,管道阻力對料漿濃度的變化最為敏感,隨濃度增加成二次函數增長。料漿流速對管道阻力的影響僅次于濃度,層流輸送時管道阻力隨流速增加成線性增長。灰砂比對管道阻力的影響有雙重性,灰砂質量比小于1∶8時膠凝材料的黏結作用占主導并增加管道阻力,反之膠凝材料的潤滑作用占主導并降低管道阻力。環管試驗得到的料漿流變參數明顯小于流變儀測試結果且更接近工程實際,管道阻力預測模型的誤差小于10%。Abstract: The high-concentration slurry prepared from full tailings used for mine backfilling can effectively eliminate the disasters caused by underground voids and tailing ponds. Using pipelines to transport filling slurry is the most efficient way, and the pipe resistance is one of the most important parameters. Presently, the loop test method for studying the pipe transportation parameters of filling slurry is closest to engineering reality. To determine the influence of the cement-sand ratio, concentration, and flow velocity of the high-concentration filling slurry prepared from full tailings on the pipe resistance and predict the resistance of industrial filling pipelines, pilot-scale loop tests were performed. A pipe resistance prediction model was established based on the relationship between the shear stress and the shear rate at the pipe wall. The gray correlation method was used to analyze the influence of various factors on the pipe resistance, and the rheological parameters of filling slurry were obtained by linear regression. The results show that the pipe resistance is most sensitive to the mass concentration of filling slurry and increases quadratically. The flow velocity of filling slurry has the second-greatest effect on pipe resistance, and the resistance increases linearly with flow velocity in laminar flow. The cement-sand ratio of filling slurry has a dual effect on the pipe resistance. When the cement-sand ratio is less than 1∶8, the cohesion effect of the cementing material is dominant and increases the pipe resistance. On the contrary, the lubrication effect of the cementing material is dominant and reduces the pipe resistance. The rheological parameters of filling slurry obtained by the loop test are much smaller than those obtained by the rheometer, and the loop test method is more reliable. The error of the pipe resistance prediction model is within 10%.
-
Key words:
- full tailings /
- high-concentration filling /
- loop test /
- pipe resistance /
- rheological parameters
-
表 1 關聯度計算結果
Table 1. Calculation results of correlation degree
Group, k ${\xi _1}(k)$ ${\xi _{\rm{2}}}(k)$ ${\xi _{\rm{3}}}(k)$ Group, k ${\xi _1}(k)$ ${\xi _{\rm{2}}}(k)$ ${\xi _{\rm{3}}}(k)$ Group, k ${\xi _1}(k)$ ${\xi _{\rm{2}}}(k)$ ${\xi _{\rm{3}}}(k)$ 1 0.4506 0.4506 0.663 17 0.4509 0.7849 0.3875 33 0.4612 0.5828 0.4651 2 0.4694 0.4694 0.8894 18 0.4288 0.8622 0.4773 34 0.4430 0.6147 0.6240 3 0.4884 0.4884 0.8134 19 0.4164 0.9174 0.5909 35 0.4286 0.6449 0.8168 4 0.5105 0.5105 0.6062 20 0.3793 0.8734 0.8088 36 0.3982 0.7284 0.7870 5 0.3972 0.5239 0.7093 21 0.8024 0.6219 0.6431 37 0.5932 0.567 0.6063 6 0.4086 0.5438 0.9225 22 0.7490 0.6583 0.9257 38 0.5635 0.5971 0.8785 7 0.4228 0.5694 0.6783 23 0.6961 0.7055 0.7971 39 0.5403 0.6256 0.8064 8 0.4455 0.6113 0.4935 24 0.6395 0.7749 0.5445 40 0.5089 0.6738 0.545 9 0.3443 0.6871 0.9522 25 0.8963 0.6394 0.8783 41 0.759 0.6101 0.8276 10 0.3543 0.7284 0.653 26 0.9620 0.6721 0.7413 42 0.7143 0.6425 0.7746 11 0.3600 0.7527 0.4965 27 0.9706 0.7052 0.5768 43 0.6803 0.6726 0.6100 12 0.3650 0.7749 0.3828 28 0.8594 0.7784 0.4365 44 0.6389 0.7187 0.4438 13 0.3333 1.0000 0.8209 29 0.8088 0.9552 0.9485 45 0.8678 0.9264 0.9755 14 0.3398 0.9459 0.5738 30 0.8573 0.9776 0.6613 46 0.8355 0.9661 0.6860 15 0.3512 0.8678 0.4716 31 0.8963 0.9314 0.5372 47 0.7895 0.9664 0.4940 16 0.3543 0.8491 0.3736 32 0.9530 0.8072 0.4095 48 0.7241 0.8703 0.3818 表 2 充填料漿流變參數
Table 2. Rheological parameters of the filling slurry
Cement-sand ratio Mass fraction / % Loop test method Rheometer method Yield stress / Pa Viscosity coefficient / (Pa·s) Yield stress / Pa Viscosity coefficient / (Pa·s) 1∶4 75.8 14.35 0.10 31.42 0.25 73.7 9.34 0.09 26.11 0.22 70.8 4.53 0.05 16.49 0.16 68.9 0.68 0.04 14.39 0.09 1∶10 75.3 30.68 0.13 45.02 0.30 73.1 10.73 0.10 31.21 0.22 71.7 3.62 0.09 21.22 0.18 69.5 0.91 0.08 18.51 0.15 1∶15 75.4 23.17 0.11 36.39 0.28 73.9 14.31 0.09 26.70 0.26 72.2 6.48 0.08 19.13 0.21 69.7 3.76 0.07 14.36 0.19 表 3 管道阻力預測值與實測值對比
Table 3. Comparison of predicted and measured pipe resistance
Cement–
sand ratioMass fraction/% Flow velocity/
(m·s?1)Measured pipe resistance/
(kPa·m–1)Predicted
pipe resistance/
(kPa·m?1)Error/
%Cement?
sand ratioMass fraction/% Flow velocity/
(m·s?1)Measured pipe resistance/
(kPa·m?1)Predicted pipe resistance/
(kPa·m?1)Error/% 1∶4 75.8 1.45 1.74 1.72 ?1.1 1∶10 73.1 1.88 1.77 1.85 4.5 1.71 1.88 1.85 ?1.6 2.27 1.97 2.06 4.6 1.95 2.01 1.98 ?1.5 71.7 1.36 0.90 0.81 ?10.0 2.23 2.15 2.13 ?0.9 1.67 1.02 0.95 ?6.9 73.7 1.34 1.27 1.32 3.9 1.92 1.13 1.07 ?5.4 1.65 1.38 1.46 5.8 2.30 1.34 1.25 ?6.8 1.91 1.51 1.59 5.3 1∶15 75.4 1.31 2.35 2.33 ?0.9 2.28 1.70 1.76 3.5 1.66 2.49 2.53 1.6 70.8 1.38 0.66 0.65 ?1.5 1.91 2.61 2.68 2.7 1.69 0.79 0.74 ?6.3 2.28 2.89 2.89 0.0 1.98 0.86 0.81 ?5.8 73.9 1.32 1.59 1.65 3.8 2.33 0.92 0.90 ?2.2 1.65 1.73 1.80 4.0 1∶10 75.3 1.30 3.00 2.91 ?3.0 1.90 1.85 1.92 3.8 1.63 3.18 3.14 ?1.3 2.29 2.03 2.11 3.9 1.89 3.29 3.32 0.9 72.2 1.36 1.01 0.98 ?3.0 2.27 3.66 3.58 ?2.2 1.68 1.14 1.12 ?1.8 73.1 1.33 1.47 1.56 6.1 1.91 1.25 1.21 ?3.2 1.64 1.61 1.73 7.5 2.30 1.40 1.38 ?1.4 259luxu-164 -
參考文獻
[1] Wang K, Yang P, Karen H E, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526王昆, 楊鵬, Karen Hudson-Edwards, 等. 尾礦庫潰壩災害防控現狀及發展. 工程科學學報, 2018, 40(5):526 [2] Liu X H, Wang G L, Zhao Z B, et al. Study on the flow resistance characteristics of structure fluid backfilling slurry based on loop pipe testing. China Molybdenum Ind, 2016, 40(5): 20劉曉輝, 王國立, 趙占斌, 等. 結構流充填料漿環管試驗及其阻力特性研究. 中國鉬業, 2016, 40(5):20 [3] Yang C, Guo L J, Zhang L, et al. Study of the rheological characteristics of copper tailings and calculation of resistance in pipeline transportation. Chin J Eng, 2017, 39(5): 663楊超, 郭利杰, 張林, 等. 銅尾礦流變特性與管道輸送阻力計算. 工程科學學報, 2017, 39(5):663 [4] Yang Z Q, Wang Y Q, Gao Q, et al. Pipe-loop test for transportation characteristics of paste in Jinchuan mine and corresponding drag reduction technology. Min Metall Eng, 2016, 36(5): 22 doi: 10.3969/j.issn.0253-6099.2016.05.006楊志強, 王永前, 高謙, 等. 金川膏體管道輸送特性環管試驗與減阻技術. 礦冶工程, 2016, 36(5):22 doi: 10.3969/j.issn.0253-6099.2016.05.006 [5] Wu A X, Ruan Z E, Wang Y M, et al. Simulation of long-distance pipeline transportation properties of whole-tailings paste with high sliming. J Cent South Univ, 2018, 25(1): 141 doi: 10.1007/s11771-018-3724-9 [6] Wang S Y, Wu A X, Yin S H, et al. Influence factors of pressure loss in pipeline transportation of paste slurry. Chin J Eng, 2015, 37(1): 7王少勇, 吳愛祥, 尹升華, 等. 膏體料漿管道輸送壓力損失的影響因素. 工程科學學報, 2015, 37(1):7 [7] Li J, Xiao C C, Jiang J, et al. Thixotropic properties of paste pumping effect on pipeline resistance. China Min Mag, 2017, 26(2): 283李俊, 肖崇春, 姜寄, 等. 泵送膏體觸變特性對管道阻力的影響. 中國礦業, 2017, 26(2):283 [8] Liu X H. Macro-micro analysis and test method of rheological behavior of paste tailings. Met Mine, 2018(5): 7劉曉輝. 膏體尾礦流變行為的宏細觀分析及其測定方法. 金屬礦山, 2018(5):7 [9] Liu X H, Wu A X, Yao J, et al. Resistance characteristic and approximate calculation of paste tailings slip flow inside pipe. Chin J Nonferrous Met, 2019, 29(10): 2403劉曉輝, 吳愛祥, 姚建, 等. 膏體尾礦管內滑移流動阻力特性及其近似計算方法. 中國有色金屬學報, 2019, 29(10):2403 [10] Chen Q S, Zhang Q L, Wang X M, et al. Pipeline hydraulic gradient model of paste-like unclassified tailings backfill slurry. J China Univ Min Technol, 2016, 45(5): 901陳秋松, 張欽禮, 王新民, 等. 全尾砂似膏體管輸水力坡度計算模型研究. 中國礦業大學學報, 2016, 45(5):901 [11] Steward N R, Allen G, Tiedermann K. Paste backfill reticulation optimisation using high shear mixing at DeGrussa Mine // Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings. Perth, 2019: 411 [12] Chen D D, Jiang X G, Lv S, et al. Rheological properties and stability of lignite washery tailing suspensions. Fuel, 2015, 141: 214 doi: 10.1016/j.fuel.2014.10.067 [13] Boger D V. Rheology of slurries and environmental impacts in the mining industry. Ann Rev Chem Biomol Eng, 2013, 4: 239 doi: 10.1146/annurev-chembioeng-061312-103347 [14] Senapati P K, Mishra B K. Feasibility studies on pipeline disposal of concentrated copper tailings slurry for waste minimization. J Inst Eng India, 2017, 98(3): 277 [15] Bharathan B, McGuinness M, Kuhar S, et al. Pressure loss and friction factor in non-Newtonian mine paste backfill: Modelling, loop test and mine field data. Powder Technol, 2019, 344: 443 doi: 10.1016/j.powtec.2018.12.029 [16] Hou Y B, Zhang X, Li P, et al. Mechanical properties and nondestructive testing of cemented mass of unclassified tailings under freeze-thaw cycles. Chin J Eng, 2019, 41(11): 1433侯運炳, 張興, 李攀, 等. 凍融循環對全尾砂固結體力學性能影響及無損檢測研究. 工程科學學報, 2019, 41(11):1433 [17] Li L, Zhang J, Hassani F, et al. Slump tests for yield stress of paste tailings. Met Mine, 2017(1): 30 doi: 10.3969/j.issn.1001-1250.2017.01.007李亮, 張柬, Hassani Ferri, 等. 膏體尾礦屈服應力的塌落度試驗研究. 金屬礦山, 2017(1):30 doi: 10.3969/j.issn.1001-1250.2017.01.007 [18] Li X B, Liu B, Yao J R, et al. Theory and practice of green mine backfill with whole phosphate waste. Chin J Nonferrous Met, 2018, 28(9): 1845李夕兵, 劉冰, 姚金蕊, 等. 全磷廢料綠色充填理論與實踐. 中國有色金屬學報, 2018, 28(9):1845 [19] Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168 [20] Pullum L, Boger D V, Sofra F. Hydraulic mineral waste transport and storage. Ann Rev Fluid Mech, 2018, 50: 157 doi: 10.1146/annurev-fluid-122316-045027 [21] Cruz N, Forster J, Bobicki E R. Slurry rheology in mineral processing unit operations: A critical review. Can J Chem Eng, 2019, 97(7): 2102 doi: 10.1002/cjce.23476 [22] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Cent South Univ Sci Technol, 2018, 49(10): 2519 doi: 10.11817/j.issn.1672-7207.2018.10.019王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519 doi: 10.11817/j.issn.1672-7207.2018.10.019 [23] Yang Q P, Wang Y M, Wang Y, et al. Experimental study on paste filling loop of Chambisch copper mine. Min Technol, 2016, 16(5): 21 doi: 10.3969/j.issn.1671-2900.2016.05.008楊清平, 王貽明, 王勇, 等. 謙比希銅礦膏體充填環管實驗研究. 采礦技術, 2016, 16(5):21 doi: 10.3969/j.issn.1671-2900.2016.05.008 [24] Ren H G, Tan Z Y, Wang H J. Sensitivity analysis of rockmass parameters in stope based on the OED-GRA evaluation model. Nonferrous Met (Mine Sect) , 2017, 69(1): 63任紅崗, 譚卓英, 王海軍. 基于OED-GRA評價模型的采場巖體參數敏感性分析. 有色金屬(礦山部分), 2017, 69(1):63 [25] Qiu J P, Yang L, Sun X G, et al. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill. Minerals, 2017, 7(4): 58 doi: 10.3390/min7040058 [26] Bauer E, de Sousa J G G, Guimar?es A, et al. Study of the laboratory Vane test on mortars. Build Environ, 2007, 42(1): 86 doi: 10.1016/j.buildenv.2005.08.016 -