<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬層合板板形翹曲變形行為

王春海 張清東 李豪 張立元 張勃洋

王春海, 張清東, 李豪, 張立元, 張勃洋. 金屬層合板板形翹曲變形行為[J]. 工程科學學報, 2021, 43(3): 409-421. doi: 10.13374/j.issn2095-9389.2020.01.03.001
引用本文: 王春海, 張清東, 李豪, 張立元, 張勃洋. 金屬層合板板形翹曲變形行為[J]. 工程科學學報, 2021, 43(3): 409-421. doi: 10.13374/j.issn2095-9389.2020.01.03.001
WANG Chun-hai, ZHANG Qing-dong, LI Hao, ZHANG Li-yuan, ZHANG Bo-yang. Warpage deformation behavior of metal laminates[J]. Chinese Journal of Engineering, 2021, 43(3): 409-421. doi: 10.13374/j.issn2095-9389.2020.01.03.001
Citation: WANG Chun-hai, ZHANG Qing-dong, LI Hao, ZHANG Li-yuan, ZHANG Bo-yang. Warpage deformation behavior of metal laminates[J]. Chinese Journal of Engineering, 2021, 43(3): 409-421. doi: 10.13374/j.issn2095-9389.2020.01.03.001

金屬層合板板形翹曲變形行為

doi: 10.13374/j.issn2095-9389.2020.01.03.001
基金項目: 國家自然科學基金資助項目(51575040)
詳細信息
    通訊作者:

    E-mail:wangch9314@shougang.com.cn

  • 中圖分類號: TG335.56

Warpage deformation behavior of metal laminates

More Information
  • 摘要: 采用經典彈性力學方法建立了金屬層合板翹曲解析計算力學模型,獲得了厚度方向不均勻延伸與板形翹曲之間的定量關系;并分別建立了在線和離線兩種狀態下金屬層合板翹曲變形的有限元數值模擬模型,對解析計算力學模型進行了驗證;在此基礎上,揭示了金屬層合板產生板形翹曲缺陷的力學根源以及各因素對金屬層合板板形翹曲缺陷演變的影響規律,同時對比分析了雙層和三層結構層合板與均質板的翹曲變形差異以及銅/碳鋼層合板與不銹鋼/碳鋼層合板二者之間的翹曲變形差異。研究表明,金屬層合板翹曲高度與延伸差、厚度比呈正比關系,與厚度呈反比關系,且基層與覆層的切變模量相差越大,厚度比對金屬層合板翹曲變形的影響越大。基于數值模型,模擬研究了層合板在理想均勻分布的初始溫度下,歷經去應力退火過程時,其板形翹曲的變形行為及規律,并與均質板進行比較。最后,在工業生產現場取樣已翹曲層合板,通過測量其彎曲變形量進而反求其初始延伸差,驗證了解析計算力學模型的準確性。

     

  • 圖  1  金屬層合板結構模型。(a)雙層結構的層合板;(b)三層結構的層合板

    Figure  1.  Structural model of metal laminate: (a) double-layer structure laminate; (b) three-layer laminate

    圖  2  金屬層合板翹曲有限元模型。(a)工業在線有張力帶狀層合板翹曲模型;(b)離線裁切后塊狀層合板翹曲模型

    Figure  2.  Finite element model for warping of metal laminates: (a) industrial online warpage model of tensioned ribbon laminate; (b) warping model of block laminate after offline cutting

    圖  3  金屬層合板翹曲模態。(a)C翹翹曲模態;(b)L翹翹曲模態

    Figure  3.  Warping mode of metal laminate: (a) C warping mode; (b) L warping mode

    圖  4  延伸差對不同翹曲模態變形的影響。(a)C翹;(b)L翹

    Figure  4.  Effect of extension difference on the warpage height of C warping (a) and L warping (b)

    圖  5  厚度對不同翹曲模態變形的影響。(a)C翹;(b)L翹

    Figure  5.  Effect of thickness on warpage height of C warping (a) and L warping (b)

    圖  6  厚度比對不同翹曲模態變形的影響。(a)C翹;(b)L翹

    Figure  6.  Effect of the thickness ratio on warpage height of C warping (a) and L warping (b)

    圖  7  金屬層合板不同翹曲后界面處應力分布情況。(a)C翹;(b)L翹

    Figure  7.  Stress distribution at the interface of metal laminate after C warping (a) and L warping (b)

    圖  8  層合板與均質板冷卻過程熱變形行為對比。(a)工業在線有張力帶狀層合板和均質板對比;(b)離線裁切后塊狀層合板和均質板對比

    Figure  8.  Comparison of the thermal deformation behavior of laminated and homogeneous plates during cooling: (a) comparison of industrial online tension band laminate and homogeneous board; (b) comparison of block laminate and homogeneous board after offline cutting

    圖  9  不銹鋼?碳鋼雙金屬層合板翹曲模態。(a)工業在線有張力層合板翹曲模態;(b)離線裁切后塊狀層合板翹曲模態

    Figure  9.  Stainless steel?carbon steel bimetal laminate warpage mode: (a) warping mode of industrial online tension laminate; (b) warping mode of block laminate after offline cutting

    圖  10  終冷溫度對C翹(a)和四角翹(b)翹曲變形的影響

    Figure  10.  Effect of the final cooling temperature on warpage height of C warpage (a) and four corners warpage (b)

    圖  11  冷卻后層合板界面處應力分布。(a)工業在線有張力時帶狀金屬層合板;(b)離線裁切后塊狀金屬層合板

    Figure  11.  Stress distribution at the interface of the laminate after cooling: (a) strip metal laminate with tension in the industrial line; (b) bulk metal laminate after offline cutting

    圖  12  翹曲高度測量示意圖

    Figure  12.  Schematic diagram of warpage height measurement

    表  1  金屬層合板力學性能

    Table  1.   Mechanical properties of metal laminates

    Metal laminatesMaterialE / GPaG/GPa$\nu $
    Copper / carbon steelT2/ Q235108/21041/810.32/0.3
    Stainless steel/carbon steel304/ Q235202/21078/810.3/0.3
    下載: 導出CSV

    表  2  解析計算與有限元計算C翹翹曲高度結果對比

    Table  2.   Comparison between analytical calculation and finite element calculation of C warpage height

    Metal laminateLaminate structureExtension difference / 10?5Finite element results / mmAnalytical calculation results / mmRelative error / %
    Copper / carbon steelDouble layer50/1007.41/14.827.23/14.462.43/2.43
    Three layers50/1005.20/10.415.28/10.551.52/1.33
    Stainless steel / carbon steel laminateDouble layer50/1008.40/16.808.36/16.720.48/0.48
    Three layers50/1007.77/15.538.20/16.405.24/5.31
    下載: 導出CSV

    表  3  解析計算與有限元計算L翹翹曲高度結果對比

    Table  3.   Comparison between analytical calculation and finite element calculation of L warpage height

    Metal laminateLaminate structureExtension difference /
    10?5
    Finite element results / mmAnalytical calculation results / mmRelative error / %
    Copper / carbon steelDouble layer50/10093.73/186.6594.34/188.680.65/1.08
    Three layers50/10066.57/132.9268.37/136.752.63/2.80
    Stainless steel / carbon steel laminateDouble layer50/100111.77/222.35111.44/222.870.30/0.23
    Three layers50/100105.45/210.17109.36/218.723.58/3.91
    下載: 導出CSV

    表  4  L翹翹曲高度測量值與計算值對比

    Table  4.   Comparison of the measured values and calculated values of the L warpage height

    Working conditionSampling parameters / mmMeasurement results / mmCalculation results /
    mm
    Relative error /
    %
    d1d2h1h2
    1299.8300.215.812.514.1513.405.3
    2399.6400.435.731.233.4531.844.8
    3499.4500.365.963.164.5062.183.6
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Shi H J, Ding X, Luo H L, et al. Research progress of preparation technology of heterogeneous nonferrous metal composite plate. Hot Work Technol, 2019, 48(6): 1

    史豪杰, 丁旭, 羅海龍, 等. 異種有色金屬復合板制備技術的研究進展. 熱加工工藝, 2019, 48(6):1
    [2] Liu Y, Zhang T Z, Sun A X, et al. Research status of compounding technology for Cu/Steel bimetal. Mater Rev, 2015, 29(15): 10

    劉越, 張太正, 孫愛新, 等. 銅/鋼雙金屬復合制備工藝技術研究現狀. 材料導報, 2015, 29(15):10
    [3] Li L, Bi J H, Zhou D J. Production and application of metal clad plate and strip in China. Steel Roll, 2017, 34(2): 43

    李龍, 畢建華, 周德敬. 我國金屬復合板帶材的生產及應用. 軋鋼, 2017, 34(2):43
    [4] Qin Q, Deng J C, Zang Y, et al. Factors influencing the combined performance of hot-rolled bimetallic composite plates prepared via hot compression. Chin J Eng, 2018, 40(4): 469

    秦勤, 鄧俊超, 臧勇, 等. 熱壓316L/Q345R復合板的結合性能. 工程科學學報, 2018, 40(4):469
    [5] Ji C, Huang H G, Sun J N, et al. Research progresses on cast-rolling bonding technology of laminated metal clad strips. China Mech Eng, 2019, 30(15): 1873 doi: 10.3969/j.issn.1004-132X.2019.15.014

    季策, 黃華貴, 孫靜娜, 等. 層狀金屬復合板帶鑄軋復合技術研究進展. 中國機械工程, 2019, 30(15):1873 doi: 10.3969/j.issn.1004-132X.2019.15.014
    [6] Wang D. The Research on Simulation of Composite Cold Rolling Plate of Stainless Steel [Dissertation]. Qinhuangdao: Yanshan University, 2011

    王丹. 不銹鋼復合板冷軋模擬研究 [學位論文]. 秦皇島: 燕山大學, 2011
    [7] Ma J Z, Zhou C L, Zhang X C. The effect of different reduction and speed rate on the flatness of asymmetrical rolling clad plate. Heavy Mach, 2016(3): 20 doi: 10.3969/j.issn.1001-196X.2016.03.005

    馬江澤, 周存龍, 張校誠. 壓下率和異速比對異步軋制復合板平直度影響. 重型機械, 2016(3):20 doi: 10.3969/j.issn.1001-196X.2016.03.005
    [8] He B L, Zhang X J, He Y, et al. Simulation of head warping in hot rolling of carbon steel and stainless steel clad plate. Steel Roll, 2016, 33(2): 16

    何冰冷, 張心金, 何毅, 等. 碳鋼/不銹鋼復合厚板熱軋頭部翹曲有限元模擬. 軋鋼, 2016, 33(2):16
    [9] Zan X L, Wang F Q, Liu Z Y, et al. Mechanism analysis and research measures of residual stress-related plate shape defects in hot rolled strip. China Metall, 2020, 30(5): 35

    昝現亮, 王鳳琴, 劉子英, 等. 熱軋帶鋼殘余應力相關板形缺陷機理分析及攻關措施. 中國冶金, 2020, 30(5):35
    [10] Masui T, Kaseda Y, Ando K. Warp control in strip processing plant. ISIJ Int, 1991, 31(3): 262 doi: 10.2355/isijinternational.31.262
    [11] Li H, Zhang L Y, Zhang B Y, et al. Microstructure characterization and mechanical properties of stainless steel clad plate. Materials, 2019, 12(3): 509 doi: 10.3390/ma12030509
    [12] He J F. Cause analysis of tinplate warp and our countermeasures. Baosteel Technol, 2004(1): 36 doi: 10.3969/j.issn.1008-0716.2004.01.010

    何建鋒. 寶鋼鍍錫板翹曲原因分析與對策. 寶鋼技術, 2004(1):36 doi: 10.3969/j.issn.1008-0716.2004.01.010
    [13] Tang W, Du F S, Wen J, et al. Research and application of warping control strategy on tinplate. Iron Steel, 2019, 54(12): 55

    唐偉, 杜鳳山, 文杰, 等. 鍍錫板翹曲控制策略研究與應用. 鋼鐵, 2019, 54(12):55
    [14] Zhang Q D, Dai J T. Simulation of warping deformation in thin steel strips. J Univ Sci Technol Beijing, 2011, 33(8): 1006

    張清東, 戴杰濤. 帶鋼板形翹曲變形行為的仿真. 北京科技大學學報, 2011, 33(8):1006
    [15] Zhang Q D, Lu X F, Zhang X F. Analysis of buckling deformation for thin cold-rolled strip with initial warping defect. Eng Mech, 2014, 31(8): 243 doi: 10.6052/j.issn.1000-4750.2013.04.0340

    張清東, 盧興福, 張曉峰. 具有初始翹曲缺陷冷軋薄帶鋼板形瓢曲變形行為研究. 工程力學, 2014, 31(8):243 doi: 10.6052/j.issn.1000-4750.2013.04.0340
    [16] Zhang Q D, Lu X F, Dai J T, et al. Analysis of warping deformation for cold-rolled strips. J Univ Sci Technol Beijing, 2014, 36(3): 378

    張清東, 盧興福, 戴杰濤, 等. 冷軋帶鋼板形翹曲變形過程及規律的解析. 北京科技大學學報, 2014, 36(3):378
    [17] Zhang Q D, Zhou S, Yin J C. Numerical simulation on the wave-shaped defect generation and tension straightening process of thin strips. Chin J Eng, 2015, 37(6): 789

    張清東, 周歲, 銀家琛. 薄帶材浪形缺陷生成與拉伸矯直過程數值仿真. 工程科學學報, 2015, 37(6):789
    [18] Li B, Zhang Q D, Zhang X F. Heredity and evolution laws of flatness defects in steel strip temper rolling processes. Chin J Eng, 2015, 37(2): 231

    李博, 張清東, 張曉峰. 帶鋼平整軋制過程中板形缺陷的遺傳和演變規律. 工程科學學報, 2015, 37(2):231
    [19] Dai J T, Zhang Q D. Analysis and experiment on central buckling and post buckling of thin cold-rolled sheet. J Mech Eng, 2011, 47(2): 44 doi: 10.3901/JME.2011.02.044

    戴杰濤, 張清東. 冷軋薄板中浪板形缺陷的屈曲及后屈曲理論與軋制試驗研究. 機械工程學報, 2011, 47(2):44 doi: 10.3901/JME.2011.02.044
    [20] Dai J T, Li L J, Zhang Z J. Warping analysis of medium plate based on symplectic elasticity method. Chin J Solid Mech, 2015, 36(3): 215

    戴杰濤, 李烈軍, 張祖江. 基于辛彈性力學方法的中厚板板形翹曲行為分析. 固體力學學報, 2015, 36(3):215
    [21] Zhang B Y, Lu X F, Zhang L Y, et al. Analysis of complex warping deformation for cold-rolled strip. J Mech Eng, 2018, 54(12): 184 doi: 10.3901/JME.2018.12.184

    張勃洋, 盧興福, 張立元, 等. 冷軋極薄帶鋼復雜板形翹曲變形行為研究. 機械工程學報, 2018, 54(12):184 doi: 10.3901/JME.2018.12.184
    [22] Lu X F. Study on Buckling and Warping Deformation of Steel Strip [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    盧興福. 鋼板帶板形瓢曲與翹曲變形行為研究 [學位論文]. 北京: 北京科技大學, 2015
    [23] Zhang Q D, Lu X F, Zhang X F. Deformation of warping in apparent straight strip after shearing process. Eng Mech, 2014, 31(Suppl 1): 217

    張清東, 盧興福, 張曉峰. 表觀平直帶鋼裁切加工后翹曲變形行為研究. 工程力學, 2014, 31(增刊 1):217
    [24] Zhang Q D, Lin X, Liu J Y, et al. Modelling of Q& P steel heat treatment process based on finite element method. Acta Metall Sin, 2019, 55(12): 1569 doi: 10.11900/0412.1961.2019.00082

    張清東, 林瀟, 劉吉陽, 等. Q& P鋼熱處理過程有限元法數值模擬模型研究. 金屬學報, 2019, 55(12):1569 doi: 10.11900/0412.1961.2019.00082
    [25] Yu W, Wang Y F. Relationship between cooling parameters and warping of hot rolled strips. Chin J Eng, 2016, 38(12): 1734

    余偉, 王乙法. 熱軋帶鋼的冷卻參數與翹曲關系. 工程科學學報, 2016, 38(12):1734
    [26] Wang C H. Research on Warping Behavior and Flatness/Straightening Deformation of Metal Laminates [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    王春海. 金屬層合板翹曲行為與平整/矯直變形規律研究 [學位論文]. 北京: 北京科技大學, 2020
  • 加載中
圖(12) / 表(4)
計量
  • 文章訪問數:  2410
  • HTML全文瀏覽量:  948
  • PDF下載量:  102
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-03
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回