<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

卷積神經網絡在礦區預測中的研究與應用

袁傳新 賈東寧 周生輝

袁傳新, 賈東寧, 周生輝. 卷積神經網絡在礦區預測中的研究與應用[J]. 工程科學學報, 2020, 42(12): 1597-1604. doi: 10.13374/j.issn2095-9389.2020.01.02.001
引用本文: 袁傳新, 賈東寧, 周生輝. 卷積神經網絡在礦區預測中的研究與應用[J]. 工程科學學報, 2020, 42(12): 1597-1604. doi: 10.13374/j.issn2095-9389.2020.01.02.001
YUAN Chuan-xin, JIA Dong-ning, ZHOU Sheng-hui. Research and application of convolutional neural network in mining area prediction[J]. Chinese Journal of Engineering, 2020, 42(12): 1597-1604. doi: 10.13374/j.issn2095-9389.2020.01.02.001
Citation: YUAN Chuan-xin, JIA Dong-ning, ZHOU Sheng-hui. Research and application of convolutional neural network in mining area prediction[J]. Chinese Journal of Engineering, 2020, 42(12): 1597-1604. doi: 10.13374/j.issn2095-9389.2020.01.02.001

卷積神經網絡在礦區預測中的研究與應用

doi: 10.13374/j.issn2095-9389.2020.01.02.001
基金項目: 海洋大數據中心資助項目(2018SDPT01)
詳細信息
    通訊作者:

    E-mail:jiadn@ouc.edu.cn

  • 中圖分類號: P744.3; TP183

Research and application of convolutional neural network in mining area prediction

More Information
  • 摘要: 在研究富鈷結殼高產區地形特征基礎上,以富鈷結殼站點地理坐標為中心,獲得了一平方公里的海拔高度數值矩陣作為地形特征。使用卷積神經網絡的分析方法對數值矩陣進行訓練,學習坡度和平整度等區域特征,將富鈷結殼站點地形和其他海底地形進行區分。依據訓練后獲得的模型,對富鈷結殼高產區進行預測,取得了較好的預測效果,結合其他因素的影響,可以提高結殼靶區選取的精準度。

     

  • 圖  1  局部海山地形

    Figure  1.  Local seamount terrain

    圖  2  Conv-3結構圖

    Figure  2.  Conv-3 schematic

    圖  3  處理后的數據示例

    Figure  3.  Example terrain of processed data

    圖  4  同一陡坡矩陣的兩種標準化結果

    Figure  4.  Example of processed data

    圖  5  Conv-3的損失曲線(a)和準確率(b)

    Figure  5.  Conv-3 loss (a) and accuracy (b)

    圖  6  VGGNet 16 損失曲線(a)和準確率(b)

    Figure  6.  VGGNet 16 loss (a) and accuracy (b)

    圖  7  VGGNet 16(5×5,Max-pooling)損失曲線(a)和準確率(b)

    Figure  7.  VGGNet 16 (5×5, Max-pooling) loss (a) and accuracy (b)

    圖  8  VGGNet 16(5×5,Mean-pooling)損失曲線(a)和準確率(b)

    Figure  8.  VGGNet 16 (5×5, Mean-pooling) loss (a) and accuracy (b)

    表  1  地形坡度統計

    Table  1.   Topographic slope statistics

    Slope/(°)Ratio/%
    <821.43
    8–1266.38
    >1221.43
    下載: 導出CSV

    表  2  實驗結果

    Table  2.   Results of experiments

    MethodAccuracy
    Conv-3 (5×5)0.8226
    VGGNet 16 (3×3, Max-pooling)0.7987
    VGGNet 16 (5×5, Max-pooling)0.8158
    VGGNet 16 (5×5, Mean-pooling)0.8346
    VGGNet (7×7)Nonconvergence
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Pan J H, Liu S Q, Yang Y, et al. Types, distribution and occurrence of Co-rich crusts in the Western Pacific. Miner Deposit, 2002, 21(Suppl): 44

    潘家華, 劉淑琴, 楊憶, 等. 西太平洋富鈷結殼的類型、分布與產狀. 礦床地質, 2002, 21(增刊): 44
    [2] Morley N H, Burton J D, Tankere S P C, et al. Distribution and behaviour of some dissolved trace metals in the western Mediterranean Sea. Deep Sea Res Part Ⅱ, 1997, 44(3-4): 675 doi: 10.1016/S0967-0645(96)00098-7
    [3] Wang X H, Zhou L P, Wang Y M. Paleoenvironmental implications of high-density records in Co-rich seamount crusts from the Pacific Ocean. Sci China Ser D-Earth Sci, 2008, 51(10): 1460 doi: 10.1007/s11430-008-0092-6
    [4] Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas. Earth Planet Sci Lett, 1984, 68(1): 73 doi: 10.1016/0012-821X(84)90141-9
    [5] Zhang W Y, Zhang F Y, Zhu K C. Fractal research on seamount topography in the West Pacific Ocean. Geoscience, 2009, 23(6): 1138 doi: 10.3969/j.issn.1000-8527.2009.06.020

    章偉艷, 張富元, 朱克超. 西太平洋海域海山地形分形特征研究. 現代地質, 2009, 23(6):1138 doi: 10.3969/j.issn.1000-8527.2009.06.020
    [6] Liu Y G, He G W, Yao H Q, et al. Global distribution characteristics of seafloor cobalt-rich encrustation resources. Miner Deposit, 2013, 32(6): 1275 doi: 10.3969/j.issn.0258-7106.2013.06.013

    劉永剛, 何高文, 姚會強, 等. 世界海底富鈷結殼資源分布特征. 礦床地質, 2013, 32(6):1275 doi: 10.3969/j.issn.0258-7106.2013.06.013
    [7] Cheng Y S. Study of Evaluation of Co-rich Ferromanganese Crust Resources on Seamounts in Northwest Pacific Ocean[Dissertation]. Qingdao: Ocean University of China, 2014

    程永壽. 西北太平洋海山富鈷結殼資源評價和礦區圈定[學位論文]. 青島: 中國海洋大學, 2014
    [8] Hubel D H, Wiesel T N. Receptive fields of single neurones in the cat's striate cortex. J Physiol, 1959, 148(3): 574 doi: 10.1113/jphysiol.1959.sp006308
    [9] Zhou F Y, Jin L P, Dong J. Review of convolutional neural network. Chin J Comput, 2017, 40(6): 1229 doi: 10.11897/SP.J.1016.2017.01229

    周飛燕, 金林鵬, 董軍. 卷積神經網絡研究綜述. 計算機學報, 2017, 40(6):1229 doi: 10.11897/SP.J.1016.2017.01229
    [10] Yuan F, Zhang M M, Li X H, et al. Prospectivity modeling: from two-dimension to three-dimension. Acta Petrol Sin, 2019, 35(12): 3863 doi: 10.18654/1000-0569/2019.12.18

    袁峰, 張明明, 李曉暉, 等. 成礦預測: 從二維到三維. 巖石學報, 2019, 35(12):3863 doi: 10.18654/1000-0569/2019.12.18
    [11] Liu Q Q, Meng Q. Geochemical survey of metallogenic area (zone) and some problems are discussed. Geol Explor, 1981(11): 59

    劉泉清, 孟奇. 成礦區(帶)地球化學普查及若干問題的探討. 地質與勘探, 1981(11):59
    [12] Yang H S, Liu Y L, Wang P. Mathematical geology of gold deposits in south Gansu and north Sichuan regions—a prognostic neomethod study. Geol Geochem, 1998(1): 86

    楊恒書, 劉玉玲, 王萍. 川北甘南地區金礦數學地質預測新方法研究. 地質地球化學, 1998(1):86
    [13] Zhang B L. The new theory and technology of "geochemical three field anomalies mutually constrain each other" to predict the location of hidden resources has been applied to quickly select the target area for prospecting, and remarkable results have been achieved. Gold Sci Technol, 2004, 12(5): 48 doi: 10.3969/j.issn.1005-2518.2004.05.017

    張寶林. 應用“地物化三場異常互相約束”的隱伏資源定位預測新理論和新技術快速優選找礦靶區取得顯著效果. 黃金科學技術, 2004, 12(5):48 doi: 10.3969/j.issn.1005-2518.2004.05.017
    [14] Zhang Q H, Pu K X, Luo H Y. Application of comprehensive methods in prospecting target of polymetallic ore. Miner Explor, 2019, 10(4): 929 doi: 10.3969/j.issn.1674-7801.2019.04.027

    張慶華, 蒲開興, 羅洪遠. 綜合方法在多金屬找礦靶區預測中的應用. 礦產勘查, 2019, 10(4):929 doi: 10.3969/j.issn.1674-7801.2019.04.027
    [15] Ye S S, Zhou D D, Wang S C. Integrated mineral information forecasting system//Proceedings of the 7th National Conference on Mathematical Geology and Geoscience Information. Kunming, 2005: 59

    葉水盛, 周東岱, 王世稱. 綜合信息礦產預測系統//第七屆全國數學地質與地學信息學術會議. 昆明, 2005: 59
    [16] Li X Z. Development of an Expert System for Statistical Prediction of Medium and Large Scale Deposits[Dissertation]. Wuhan: China University of Geosciences, 2004

    李新中. 中、大比例尺礦床統計預測專家系統的研制[學位論文]. 武漢: 中國地質大學, 2004
    [17] Xu S T, Zhou Y Z. Artificial intelligence identification of ore minerals under microscope based on deep learning algorithm. Acta Petrol Sin, 2018, 34(11): 3244

    徐述騰, 周永章. 基于深度學習的鏡下礦石礦物的智能識別實驗研究. 巖石學報, 2018, 34(11):3244
    [18] Liu Y P, Zhu L X, Zhou Y Z. Application of convolutional neural network in prospecting prediction of ore deposits: taking the Zhaojikou Pb?Zn ore deposit in Anhui Province as a case. Acta Petrol Sin, 2018, 34(11): 3217

    劉艷鵬, 朱立新, 周永章. 卷積神經網絡在礦床找礦預測中的應用— —以安徽省兆吉口鉛鋅礦床為例. 石油學報, 2018, 34(11):3217
    [19] Xiao Z, Luo B, Liu Y M. Research on prospecting of ductile shear zone in mining area based on deep learning. World Nonferrous Met, 2019(21): 46 doi: 10.3969/j.issn.1002-5065.2019.21.028

    肖壯, 羅彬, 劉友明. 基于深度學習的礦區韌性剪切帶找礦研究. 世界有色金屬, 2019(21):46 doi: 10.3969/j.issn.1002-5065.2019.21.028
    [20] Ma W L. Study on Relation between Seamounts Type and Crusts Mineralization[Dissertation]. Hangzhou: Zhejiang University, 2006

    馬維林. 海山類型與結殼成礦的關系研究[學位論文]. 杭州: 浙江大學, 2006
    [21] Wei Z Q, He G W, Deng X G, et al. The progress in the study and survey of oceanic cobalt-rich crust resources. Geol China, 2017, 44(3): 460

    韋振權, 何高文, 鄧希光, 等. 大洋富鈷結殼資源調查與研究進展. 中國地質, 2017, 44(3):460
    [22] Jiao D F, Jin X L, Chu F Y, et al. Formation conditions and control factors of thick Co-rich ferromanganese crusts. Miner Deposits, 2007, 26(3): 296 doi: 10.3969/j.issn.0258-7106.2007.03.006

    矯東風, 金翔龍, 初鳳友, 等. 厚結殼的形成條件及控制因素分析. 礦床地質, 2007, 26(3):296 doi: 10.3969/j.issn.0258-7106.2007.03.006
    [23] Yan S J, Du D W, Song Q L, et al. Synergy Creg estimation of cobalt-rich crusts and spatial distribution of regional elements in Magellan Seamounts. Acta Mineral Sin, 2013(Suppl 2): 674

    閆仕娟, 杜德文, 宋慶磊, 等. 麥哲倫海山富鈷結殼及區域要素空間分布的協同克里格估計. 礦物學報, 2013(增刊 2): 674
    [24] Chu F Y, Sun G S, Li X M, et al. The growth habit and controlling factors of the cobalt-rich crusts in Seamount of the Central Pacific. J Jilin Univ Earth Sci Ed, 2005, 35(3): 320

    初鳳友, 孫國勝, 李曉敏, 等. 中太平洋海山富鈷結殼生長習性及控制因素. 吉林大學學報: 地球科學版, 2005, 35(3):320
    [25] Wang S, Yang K J. An image scaling algorithm based on bilinear interpolation with VC++. Tech Autom Appl, 2008, 27(7): 44 doi: 10.3969/j.issn.1003-7241.2008.07.014

    王森, 楊克儉. 基于雙線性插值的圖像縮放算法的研究與實現. 自動化技術與應用, 2008, 27(7):44 doi: 10.3969/j.issn.1003-7241.2008.07.014
    [26] Zhang Q Q, Liu Y, Pan J L, et al. Continuous speech recognition by convolutional neural networks. Chin J Eng, 2015, 37(9): 1212

    張晴晴, 劉勇, 潘接林, 等. 基于卷積神經網絡的連續語音識別. 工程科學學報, 2015, 37(9):1212
    [27] Xie Z H, Jiang P, Yu X H, et al. Hyperspectral face recognition system based on VGGNet and multi-band recurrent network. J Comput Appl, 2019, 39(2): 388 doi: 10.11772/j.issn.1001-9081.2018081788

    謝志華, 江鵬, 余新河, 等. 基于VGGNet和多譜帶循環網絡的高光譜人臉識別系統. 計算機應用, 2019, 39(2):388 doi: 10.11772/j.issn.1001-9081.2018081788
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  1775
  • HTML全文瀏覽量:  780
  • PDF下載量:  100
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-02
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回