<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

分層膠結充填體力學特性及裂紋演化規律

唐亞男 付建新 宋衛東 張永芳

唐亞男, 付建新, 宋衛東, 張永芳. 分層膠結充填體力學特性及裂紋演化規律[J]. 工程科學學報, 2020, 42(10): 1286-1298. doi: 10.13374/j.issn2095-9389.2019.12.29.003
引用本文: 唐亞男, 付建新, 宋衛東, 張永芳. 分層膠結充填體力學特性及裂紋演化規律[J]. 工程科學學報, 2020, 42(10): 1286-1298. doi: 10.13374/j.issn2095-9389.2019.12.29.003
TANG Ya-nan, FU Jian-xin, SONG Wei-dong, ZHANG Yong-fang. Mechanical properties and crack evolution of interbedded cemented tailings backfill[J]. Chinese Journal of Engineering, 2020, 42(10): 1286-1298. doi: 10.13374/j.issn2095-9389.2019.12.29.003
Citation: TANG Ya-nan, FU Jian-xin, SONG Wei-dong, ZHANG Yong-fang. Mechanical properties and crack evolution of interbedded cemented tailings backfill[J]. Chinese Journal of Engineering, 2020, 42(10): 1286-1298. doi: 10.13374/j.issn2095-9389.2019.12.29.003

分層膠結充填體力學特性及裂紋演化規律

doi: 10.13374/j.issn2095-9389.2019.12.29.003
基金項目: 國家自然科學基金資助項目(51804016);中央高校基本科研業務費資助項目(FRF-TP-19-014A3)
詳細信息
    通訊作者:

    E-mail:fujun0011@126.com

  • 中圖分類號: TD853

Mechanical properties and crack evolution of interbedded cemented tailings backfill

More Information
  • 摘要: 在進行大尺寸采空區嗣后充填過程中,膠結充填體易出現分層等結構現象。為深入分析結構特征對膠結充填體力學特性及裂紋演化規律的影響,首先制作中間層高度比為0.2、0.4、0.6和0.8,灰砂比為1∶4、1∶6、1∶8和1∶10的分層膠結充填體試件,然后利用GAW–2000伺服試驗系統開展單軸壓縮試驗,最后借助二維顆粒流軟件(PFC–2D),分析膠結充填體內部裂紋分布規律。結果表明:(1)分層充填體單軸抗壓強度與高度比呈指數函數關系、與灰砂比呈多項式函數關系;彈性模量與高度比及灰砂比均呈多項式函數關系;單軸抗壓強度及彈性模量均隨高度比的增加而減小、隨灰砂比的增大而增大,且兩者對灰砂比敏感度更高。(2)充填體內部裂紋演化曲線先緩慢上升,達到單軸抗壓強度的80%左右時快速上升,且灰砂比越大、高度比越大,上升速度越快,拐點到來越早,充填體試件越易發生破壞,超過單軸抗壓強度后曲線開始迅速下降。(3)分層充填體主要表現為剪切破壞、張拉破壞及共軛剪切破壞,且破壞主要集中于中間軟弱層;高度比越大,試件內部裂紋越密集,灰砂比越大,裂紋越易向兩端演化。

     

  • 圖  1  尾砂粒徑分布曲線

    Figure  1.  Distribution curve of tailings particle size

    圖  2  分層充填體試件制作與單軸壓縮試驗

    Figure  2.  Making and uniaxial compression test of layered backfill specimens

    圖  3  高度比與單軸抗壓強度關系。(a)線性擬合;(b)指數擬合;(c)多項式擬合

    Figure  3.  Relationship between height ratio and uniaxial compressive strength: (a) linear fitting; (b) exponential fitting; (c) polynomial fitting

    圖  4  灰砂比與單軸抗壓強度關系。(a)線性擬合;(b)指數擬合;(c)多項式擬合

    Figure  4.  Relationship between cement-tailing ratio and uniaxial compressive strength: (a) linear fitting; (b) exponential fitting; (c) polynomial fitting

    圖  5  高度比與彈性模量關系。(a)線性擬合;(b)指數擬合;(c)多項式擬合

    Figure  5.  Relationship between height ratio and elastic modulus: (a) linear fitting; (b) exponential fitting; (c) polynomial fitting

    圖  6  灰砂比與彈性模量關系。(a)線性擬合;(b)指數擬合;(c)多項式擬合

    Figure  6.  Relationship between cement-tailing ratio and elastic modulus: (a) linear fitting; (b) exponential fitting; (c) polynomial fitting

    圖  7  分層充填體強度敏感度曲線

    Figure  7.  Strength sensitivity curve of interbedded backfill

    圖  8  分層充填體彈性模量敏感度曲線

    Figure  8.  Elastic modulus sensitivity curve of interbedded backfill

    圖  9  尾砂真實粒徑分布與模擬顆粒對比

    Figure  9.  Comparison of the true grain-size distributions in tailings and the simulation particles

    圖  10  分層充填體數值模型細觀結構(頂底層灰砂比為1∶4、中間層灰砂比為1∶8、中間層高度比為0.4)

    Figure  10.  Microstructure of numerical model of interbedded backfill (The cement-tailing ratio of top and bottom layer is 1∶4, the cement-tailing ratio of middle layer is 1∶8, and the height ratio of middle layer is 0.4)

    圖  11  不同分層充填體裂紋演化規律。(a)高度比為0.4;(b)高度比為0.6;(c)灰砂比為1∶6;(d)灰砂比為1∶8

    Figure  11.  Cracks evolution of different interbedded backfills: (a) height ratio of 0.4; (b) height ratio of 0.6; (c) cemented-tailings ratio of 1∶6; (d) cemented-tailings ratio of 1∶8

    圖  12  分層充填體應力–應變曲線、裂紋累積曲線及裂紋增量曲線復合圖。(a)高度比0.4、灰砂比1∶4;(b)高度比0.4、灰砂比1∶8

    Figure  12.  Composite plots of stress-strain curve, crack cumulative curve and crack increment curve of interbedded backfills: (a) height ratio of 0.4 and cemented tailings ratio of 1∶4; (b) height ratio of 0.4 and cemented tailings ratio of 1∶8

    表  1  尾砂和水泥化學成分(質量分數)

    Table  1.   Chemical composition of tailings and cement (mass fraction) %

    ComponentSiO2Al2O3CaOMgOPSFeAuFe2O3SO3
    Tailing65.714.31.880.493.050.130.08<0.01
    Cement21.364.9262.333.413.211.92
    下載: 導出CSV

    表  2  擬合復相關系數(R2)

    Table  2.   Fitting complex correlation coefficient (R2)

    Function typeCement-tailing ratioAverage value
    1∶41∶61∶81∶10
    Linear0.8080.8020.8500.9190.845
    Exponential0.8920.9680.9960.9530.952
    Polynomial0.8000.8730.9960.8570.882
    下載: 導出CSV

    表  3  擬合復相關系數(R2)

    Table  3.   Fitting complex correlation coefficient (R2)

    Function typeHeight ratioAverage value
    0.20.40.60.8
    Linear0.9420.9310.9450.9680.947
    Exponential0.8970.9920.9970.9340.955
    Polynomial0.9930.9870.9940.9380.978
    下載: 導出CSV

    表  4  擬合復相關系數(R2)

    Table  4.   Fitting complex correlation coefficient (R2)

    Function typeCement-tailing ratioAverage value
    1∶41∶61∶81∶10
    Linear0.9340.9690.9480.9770.957
    Exponential0.9990.9370.9090.9980.961
    Polynomial0.9990.9380.9990.9980.984
    下載: 導出CSV

    表  5  擬合復相關系數(R2)

    Table  5.   Fitting complex correlation coefficient (R2)

    Function typeHeight ratioAverage value
    0.20.40.60.8
    Linear0.9930.9430.9950.9780.977
    Exponential0.9890.9790.9960.9880.988
    Polynomial0.9890.9980.9970.9980.996
    下載: 導出CSV

    表  6  數值模型細觀力學參數

    Table  6.   Meso-mechanical parameters of numerical model

    TypeParameterValue
    Tailings particlesDensity/(kg·m?3)2700
    Porosity0.4
    fric0.5
    Kn/(N?m?1)6.0×109
    Ks/(N?m?1)6.0×109
    Radii of particles/m4.1×10?4?3.0×10?3
    Cement particlesDensity/(kg?m?3)3200
    fric0.5
    Kn/(N?m?1)6.0×109
    Ks/(N?m?1)6.0×109
    Radii of particles/m3.0×10?4
    Parallel bond contactpb_emod/(N?m?1)1.0×109
    pb_coh/(N?m?1)4.0×108
    pb_ten/(N?m?1)2.0×108
    pb_radius1.0
    Smooth joint contactsj_Kn/(N?m?1)200×109
    sj_Ks/(N?m?1)200×109
    sj_fric0.1
    sj_large1
    Note: fric is friction coefficient; pb_ emod, pb_ coh, pb_ ten and Pb_ radius is the elastic modulus, cohesion, tensile strength and contact radius of parallel bonding contact. sj_ Kn,sj_ Ks,sj_ fric and sj_ large is the normal stiffness, tangential stiffness, friction coefficient and size of the smooth joint contact.
    下載: 導出CSV

    表  7  分層充填體破壞模式

    Table  7.   Failure modes of interbedded backfill

    Cement- tailings ratioHeight ratio 0.2Height ratio 0.4Height ratio 0.6Height ratio 0.8Failure mode analysis
    1∶4Keeping the tailing cement ratio at 4, when the height ratio is 0.2, it is mainly shown as tensile failure through the stratification plane; when the height ratio increases to 0.4, it is mainly shown as tensile shear failure; when the height ratio continues to increase to 0.6, it is mainly shown as tensile failure in the parallel loading section; when the height ratio increases to 0.8, it is mainly shown as tensile failure in the middle weak layer.
    1∶6Keep the tailing cement ratio of 6, when the height ratio is 0.2, the failure mainly occurs in the middle weak layer and penetrates the upper and lower layers; when the height ratio is 0.4, the middle weak layer takes the lead in the occurrence of multiple tension cracks; when the height ratio is increased to 0.6, the specimen shows a large shear crack failure through the weak layer; when the height ratio is increased to 0.8, the middle weak layer presents conjugate shear failure.
    1∶8When the height ratio is 0.2 and 0.4, the failure mode is basically similar, which mainly appears in the middle weak layer and is mainly tensile failure; when the height ratio increases to 0.6, it mainly appears as the main shear failure of the weak layer and accompanied by the secondary tensile crack failure; when the height ratio is 0.8, it mainly appears as the conjugate shear failure of the middle weak layer.
    1∶10All the failures are concentrated in the middle weak layer, when the height ratio is 0.2 and 0.4, it is mainly tensile failure; when the height ratio is 0.6 and 0.8, it is mainly conjugate shear failure with secondary tensile crack.
    Note: Yellow indicates CPB and red indicates internal crack.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Liu G S. Required Strength Model of Cemented Backfill with Research on Arching Mechanism Considering Backfill-Rock Interaction[Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    劉光生. 充填體與圍巖接觸成拱作用機理及強度模型研究[學位論文]. 北京: 北京科技大學, 2017
    [2] Chen X, Shi X Z, Zhou J, et al. Effect of overflow tailings properties on cemented paste backfill. J Environ Manage, 2019, 235: 133 doi: 10.1016/j.jenvman.2019.01.040
    [3] Yin S H, Liu J M, Chen W, et al. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation. Chin J Eng, 2020, 42(7): 829

    尹升華, 劉家明, 陳威, 等. 不同粗骨料對膏體凝結性能的影響及配比優化. 工程科學學報, 2020, 42(7):829
    [4] Li Y, Zhu J C, Wu Y S, et al. Research of Mechanics Properties of PVA Fiber Cementitions Composites. J Beijing Univ Technol, 2018, 44(4): 553

    李悅, 朱金才, 吳玉生, 等. PVA纖維水泥基材料力學性能試驗研究. 北京工業大學學報, 2018, 44(4):553
    [5] Xu W B, Hou Y B, Song W B, et al. Resistivity and thermal infrared precursors associated with cemented backfill mass. J Cent South Univ, 2016, 23(9): 2329 doi: 10.1007/s11771-016-3291-x
    [6] Xu W B, Tian X C, Qiu Y, et al. Experiment of the resistivity characteristic of cemented backfill mass during the whole consolidation process. J China Univ Min Technol, 2017, 46(2): 265

    徐文彬, 田喜春, 邱宇, 等. 膠結充填體固結全程電阻率特性試驗. 中國礦業大學學報, 2017, 46(2):265
    [7] Cheng A P, Zhang Y S, Dai S Y, et al. Space-time evolution of acoustic emission parameters of cemented backfill and its fracture prediction under uniaxial compression. Rock Soil Mech, 2019, 40(8): 2965

    程愛平, 張玉山, 戴順意, 等. 單軸壓縮膠結充填體聲發射參數時空演化規律及破裂預測. 巖土力學, 2019, 40(8):2965
    [8] Cheng A P, Dai S Y, Zhang Y S, et al. Study on size effect of damage evolution of cemented backfill. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 3053

    程愛平, 戴順意, 張玉山, 等. 膠結充填體損傷演化尺寸效應研究. 巖石力學與工程學報, 2019, 38(增刊1): 3053
    [9] Li C H, Wei X M, Zhang L X, et al. Energy matching relationship between cemented backfill body and ore and determination of curing time. J Min Saf Eng, 2017, 34(6): 1116

    李長洪, 魏曉明, 張立新, 等. 膠結充填體與礦石的能量匹配關系及固化時間的確定. 采礦與安全工程學報, 2017, 34(6):1116
    [10] Wei X M, Guo L J, Li C H, et al. Study of space variation law of strength of high stage cemented backfill. Rock Soil Mech, 2018, 39(Suppl 2): 45

    魏曉明, 郭利杰, 李長洪, 等. 高階段膠結充填體強度空間變化規律研究. 巖土力學, 2018, 39(增刊2): 45
    [11] Cao S, Yilmaz E, Song W D. Dynamic response of cement-tailings matrix composites under SHPB compression load. Construction Building Mater, 2018, 186: 892 doi: 10.1016/j.conbuildmat.2018.08.009
    [12] Tan Y Y, Wang J, Song W D, et al. Experimental study on mechanical properties of cemented tailings backfill under cycle dynamic loading test. J Min Saf Eng, 2019, 36(1): 184

    譚玉葉, 汪杰, 宋衛東, 等. 循環沖擊下膠結充填體動載力學特性試驗研究. 采礦與安全工程學報, 2019, 36(1):184
    [13] Cao S, Song W D. Effect of filling interval time on the mechanical strength and ultrasonic properties of cemented coarse tailing backfill. Int J Miner Process, 2017, 166: 62 doi: 10.1016/j.minpro.2017.07.005
    [14] Cao S, Song W D, Yilmaz E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Construction Building Mater, 2018, 174: 190 doi: 10.1016/j.conbuildmat.2018.04.126
    [15] Cao S, Yilmaz E, Song W D, et al. Loading rate effect on uniaxial compressive strength behavior and acoustic emission properties of cemented tailings backfill. Construction Building Mater, 2019, 213: 313 doi: 10.1016/j.conbuildmat.2019.04.082
    [16] Wang J, Song W D, Cao S, et al. Mechanical properties and failure modes of stratified backfill under triaxial cyclic loading and unloading. Int J Min Sci Technol, 2019, 29(5): 809 doi: 10.1016/j.ijmst.2018.04.001
    [17] Wang J, Song W D, Tan Y Y, et al. Damage constitutive model and strength criterion of horizontal stratified cemented backfill. Rock Soil Mech, 2019, 40(5): 1731

    汪杰, 宋衛東, 譚玉葉, 等. 水平分層膠結充填體損傷本構模型及強度準則. 巖土力學, 2019, 40(5):1731
    [18] Xu W B, Cao Y, Liu B H. Strength efficiency evaluation of cemented tailings backfill with different stratified structures. Eng Struct, 2019, 180: 18 doi: 10.1016/j.engstruct.2018.11.030
    [19] Zhang Y H, Wang X M, Wei C, et al. Dynamic mechanical properties and instability behavior of layered backfill under intermediate strain rates. Trans Nonferrous Met Soc China, 2017, 27(7): 1608 doi: 10.1016/S1003-6326(17)60183-3
    [20] Zhang A Q. Mechanical Property of Interbedded Filling Body and Its Effect on Stability of the Retaining Wall[Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    張愛卿. 互層充填體力學特性及其對擋墻穩定性影響[學位論文]. 北京: 北京科技大學, 2019
    [21] Yi X W, Ma G W, Fourie A. Compressive behavior of fiber-reinforced cemented paste backfill. Geotextiles Geomembranes, 2015, 43(3): 207 doi: 10.1016/j.geotexmem.2015.03.003
    [22] Yang Y Y, Deng Y, Li X K. Uniaxial compression mechanical properties and fracture characteristics of brucite fiber reinforced cement-based composites. Compos Struct, 2019, 212: 148 doi: 10.1016/j.compstruct.2019.01.030
    [23] Li W C, Fall M. Strength and self-desiccation of slag-cemented paste backfill at early ages: Link to initial sulphate concentration. Cem Concr Compos, 2018, 89: 160 doi: 10.1016/j.cemconcomp.2017.09.019
    [24] Cui T, He H X, Yan W M, et al. Uniaxial Compression Constitutive Model of Hybrid Fiber Reinforced Concrete. J Beijing Univ Technol, 2019, 45(10): 967

    崔濤, 何浩祥, 閆維明, 等. 混雜纖維混凝土單軸受壓本構模型. 北京工業大學學報, 2019, 45(10):967
    [25] Xu W B, Cao P W, Tian M M. Strength development and microstructure evolution of cemented tailing backfill containing different binder types and contents. Minerals, 2018, 8(4): 167 doi: 10.3390/min8040167
    [26] Fu J X, Wang J, Song W D. Damage constitutive model and strength criterion of cemented paste backfill based on layered effect considerations. J Mater Res Technol, 2020, 9(3): 6073 doi: 10.1016/j.jmrt.2020.04.011
    [27] Liu Q S, Liu D F, Tian Y C, et al. Numerical simulation of stress-strain behaviour of cemented paste backfill in triaxial compression. Eng Geol, 2017, 231: 165 doi: 10.1016/j.enggeo.2017.10.021
  • 加載中
圖(12) / 表(7)
計量
  • 文章訪問數:  3953
  • HTML全文瀏覽量:  859
  • PDF下載量:  67
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-29
  • 刊出日期:  2020-10-25

目錄

    /

    返回文章
    返回