<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

飛機隔熱隔音超細玻璃纖維棉燃燒火焰蔓延特性

劉天奇 王寧 鄭秋雨 蔡之馨 段國升

劉天奇, 王寧, 鄭秋雨, 蔡之馨, 段國升. 飛機隔熱隔音超細玻璃纖維棉燃燒火焰蔓延特性[J]. 工程科學學報, 2020, 42(12): 1647-1652. doi: 10.13374/j.issn2095-9389.2019.12.29.002
引用本文: 劉天奇, 王寧, 鄭秋雨, 蔡之馨, 段國升. 飛機隔熱隔音超細玻璃纖維棉燃燒火焰蔓延特性[J]. 工程科學學報, 2020, 42(12): 1647-1652. doi: 10.13374/j.issn2095-9389.2019.12.29.002
LIU Tian-qi, WANG Ning, ZHENG Qiu-yu, CAI Zhi-xin, DUAN Guo-sheng. Flame propagation characteristics of retardant superfine glass fiber wool in aircraft[J]. Chinese Journal of Engineering, 2020, 42(12): 1647-1652. doi: 10.13374/j.issn2095-9389.2019.12.29.002
Citation: LIU Tian-qi, WANG Ning, ZHENG Qiu-yu, CAI Zhi-xin, DUAN Guo-sheng. Flame propagation characteristics of retardant superfine glass fiber wool in aircraft[J]. Chinese Journal of Engineering, 2020, 42(12): 1647-1652. doi: 10.13374/j.issn2095-9389.2019.12.29.002

飛機隔熱隔音超細玻璃纖維棉燃燒火焰蔓延特性

doi: 10.13374/j.issn2095-9389.2019.12.29.002
基金項目: 國家自然科學基金資助項目(51774168);遼寧省自然科學基金資助項目(2020-BS-175);遼寧省教育廳科研資助項目(JYT19038,L201754);沈陽航空航天大學人才引進博士科研啟動基金資助項目(18YB25)
詳細信息
    通訊作者:

    E-mail:liutianqi613@163.com

  • 中圖分類號: V250.2

Flame propagation characteristics of retardant superfine glass fiber wool in aircraft

More Information
  • 摘要: 為研究隔熱隔音超細玻璃纖維棉燃燒火焰蔓延特性,采用火焰蔓延特性測試儀探究玻璃纖維棉暴露于輻射熱源和明火條件下燃燒火焰蔓延特性。結果表明:當點火時間從15增大至85 s,火焰沿Y軸正向蔓延最遠距離從280增至435 mm,火焰蔓延速率整體呈現先減小、后增大、再減小趨勢,分析認為火焰蔓延速率中途會增大是因為試樣在制樣時切割出切口,使局部氧氣在一定程度上得到補充。隨輻射板溫度在700~820 ℃范圍內增大,火焰沿Y軸正向蔓延最遠距離從280不斷增大至390 mm,增幅達110 mm,說明增大輻射板溫度對促進火焰蔓延有顯著作用,而火焰沿Y軸正向蔓延最遠距離的增長速率不斷減小。通過監測燃燒過程中不同位置玻璃纖維棉內部實時溫度,得到距離點火源越近的監測點溫度整體偏高,同時最高溫度出現的時間大于點火時間。得到火焰沿Y軸正向蔓延最遠距離與玻璃纖維棉厚度的定量擬合曲線,得到玻璃纖維棉厚度在12~48 mm越大,對阻止火焰蔓延與擴散的效果越明顯,分析認為這是由于大厚度玻璃纖維棉在燃燒時,有更多熱量沿內部厚度方向傳播,從而減小了火焰熱量沿Y軸正向的傳播速度和蔓延距離。

     

  • 圖  1  火焰蔓延特性測試儀。(a)實物圖;(b)輻射板試驗箱示意圖

    Figure  1.  Flame propagation characteristic tester: (a) physical map; (b) diagram of radiation panel test box

    圖  2  超細玻璃纖維棉制樣與點火。(a)樣品厚度;(b)樣品;(c)點火

    Figure  2.  Sample of superfine glass fiber wool and ignition: (a) sample thickness; (b) sample; (c) ignition

    圖  3  lt變化關系

    Figure  3.  Relationship between l and t

    圖  4  火焰蔓延情況(t=15 s)

    Figure  4.  Flame propagation condition (t=15 s)

    圖  5  lT變化關系

    Figure  5.  Relationship between l and T

    圖  6  火焰蔓延情況(T=820 ℃)

    Figure  6.  Flame propagation condition(T=820 ℃)

    圖  7  溫度變化曲線

    Figure  7.  Curves of temperature change

    圖  8  ld變化關系

    Figure  8.  Relationship between l and d

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhang H P. Introduction to Aircraft Fire Protection Technology. Beijing: Science Press, 2017

    張和平. 飛機防火技術概論. 北京: 科學出版社, 2017
    [2] Wu H H, Ren C Q, Wang J, et al. Research status and development trend of structural thermal insulation materials. New Chem Mater, 2020, 48(1): 6

    吳海華, 任超群, 王俊, 等. 結構型隔熱材料研究現狀及發展趨勢. 化工新型材料, 2020, 48(1):6
    [3] Wu D F, Lin L J, Wu W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500 ℃. Acta Aeron Astron Sin, 2020, 41(7): 223612-1

    吳大方, 林鷺勁, 吳文軍, 等. 1500 ℃極端高溫環境下高超聲速飛行器輕質隔熱材料熱/振聯合試驗. 航空學報, 2020, 41(7): 223612-1
    [4] Li Y Y, Sun Y M, Qiu J L, et al. Moisture absorption characteristics and thermal insulation performance of thermal insulation materials for cold region tunnels. Constr Build Mater, 2020, 237: 117765 doi: 10.1016/j.conbuildmat.2019.117765
    [5] Li Y F, Sio W K, Tsai Y K. A compressive peak strength model for CFRP-confined thermal insulation materials under elevated temperature. Materials, 2020, 13(1): 26
    [6] Zangana S, Epaarachchi J, Ferdous W, et al. A novel hybridised composite sandwich core with glass, Kevlar and Zylon fibres – Investigation under low-velocity impact. Int J Impact Eng, 2020, 137: 103430 doi: 10.1016/j.ijimpeng.2019.103430
    [7] Stadler G, Primetzhofer A, Pinter G, et al. Investigation of fibre orientation and notch support of short glass fibre reinforced thermoplastics. Int J Fatigue, 2020, 131: 105284 doi: 10.1016/j.ijfatigue.2019.105284
    [8] Makhtar S N N M, Pauzi M Z M, Mahpoz N M, et al. Preparation, characterization and performance evaluation of supported zeolite on porous glass hollow fiber for desalination application. Arab J Chem, 2020, 13(1): 3429 doi: 10.1016/j.arabjc.2018.11.015
    [9] Cheon J, Lee M, Kim M. Study on the stab resistance mechanism and performance of the carbon, glass and aramid fiber reinforced polymer and hybrid composites. Compos Struct, 2020, 234: 111690 doi: 10.1016/j.compstruct.2019.111690
    [10] Wiprachtiger M, Haupt M, Heeren N, et al. A framework for sustainable and circular system design: development and application on thermal insulation materials. Resour Conserv Recycl, 2020, 154: 104631 doi: 10.1016/j.resconrec.2019.104631
    [11] Yang W, Liu J P, Wang Y Y, et al. Experimental study on the thermal conductivity of aerogel-enhanced insulating materials under various hygrothermal environments. Energy Build, 2020, 206: 109583 doi: 10.1016/j.enbuild.2019.109583
    [12] Xiu Z X. Introduction to Safety Design and Evaluation Technology of Civil Aircraft System. 2nd Ed. Shanghai: Shanghai Jiao Tong University Press, 2018

    修忠信. 民用飛機系統安全性設計與評估技術概論. 2版. 上海: 上海交通大學出版社, 2018
    [13] Huang C, Zhang Y. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method. Chin J Aeron, 2014, 27(4): 791 doi: 10.1016/j.cja.2014.03.007
    [14] Ren D P, Xia X L, Ai Q. Analysis of coupled heat transfer in air cooling channel of aeroengine and thermal isolation layer. Acta Aeron Astron Sin, 2005, 26(4): 426 doi: 10.3321/j.issn:1000-6893.2005.04.009

    任德鵬, 夏新林, 艾青. 飛機發動機冷氣道與隔熱層的耦合傳熱分析. 航空學報, 2005, 26(4):426 doi: 10.3321/j.issn:1000-6893.2005.04.009
    [15] Headley A J, Hileman M B, Robbins A S, et al. Thermal conductivity measurements and modeling of ceramic fiber insulation materials. Int J Heat Mass Transfer, 2019, 129: 1287 doi: 10.1016/j.ijheatmasstransfer.2018.10.060
    [16] Lee S C, Cunnington G R. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transfer, 2000, 14(2): 121 doi: 10.2514/2.6508
    [17] Zhao S Y, Zhang B M, Du S Y. Effects of contact resistance on heat transfer behaviors of fibrous insulation. Chin J Aeron, 2009, 22(5): 569 doi: 10.1016/S1000-9361(08)60143-0
    [18] Zhao S Y, Zhang B M, Du S Y. An inverse analysis to determine conductive and radiative properties of a fibrous medium. J Quant Spectrosc Radiat Transfer, 2009, 110(13): 1111 doi: 10.1016/j.jqsrt.2009.03.022
    [19] Zhao S Y, Zhang B M, He X D. Temperature and pressure dependent effective thermal conductivity of fibrous insulation. Int J Therm Sci, 2009, 48(2): 440 doi: 10.1016/j.ijthermalsci.2008.05.003
    [20] Yang H L, Hu Z J, Sun C C, et al. Pore structure of nano-porous thermal insulating materials and thermal transport via gas phase in their pores. Chin J Eng, 2019, 41(6): 788

    楊海龍, 胡子君, 孫陳誠, 等. 納米隔熱材料的孔隙結構特征與氣體熱傳輸特性. 工程科學學報, 2019, 41(6):788
    [21] An W G, Sun J H, Liew K M, et al. Flammability and safety design of thermal insulation materials comprising PS foams and fire barrier materials. Mater Des, 2016, 99: 500 doi: 10.1016/j.matdes.2016.03.080
    [22] Huang X J, Sun J H, Ji J, et al. Flame spread over the surface of thermal insulation materials in different environments. Chin Sci Bull, 2011, 56(15): 1617 doi: 10.1007/s11434-010-4187-z
    [23] Chen Z F, Wu C, Yang Y, et al. Preparation of super-fine aviation glass wool and its property study on sound and thermal insulation. J Nanjing Univ Aeron Astron, 2016, 48(1): 10

    陳照峰, 吳操, 楊勇, 等. 航空級超細玻璃纖維棉氈的制備及隔音隔熱性能研究. 南京航空航天大學學報, 2016, 48(1):10
    [24] Chen Z. The Research on Key Fabrication Process and Properties of Na2O–CaO–B2O3–SiO2 Ultra-fine Glass Wool[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016

    陳舟. 1~4 μm級Na2O–CaO–B2O3–SiO2超細離心噴吹玻璃棉關鍵制備技術與性能研究[學位論文]. 南京: 南京航空航天大學, 2016
    [25] China Civil Aviation Administration. CCAR-25 China Civil Aviation Regulations Airworthiness Standards for Transport Aircraft, Appendix F, Part VI: Testing Equipment for Combustion and Flame Propagation Characteristics of Insulation and Sound Insulation. Beijing: China Civil Aviation Press, 2011

    中國民用航空局. CCAR-25中國民用航空規章運輸類飛機適航標準, 附錄F第Ⅵ部分: 隔熱隔音材料燃燒及火焰蔓延特性試驗設備. 北京: 中國民航出版社, 2011
  • 加載中
圖(8)
計量
  • 文章訪問數:  2623
  • HTML全文瀏覽量:  989
  • PDF下載量:  32
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-29
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回