[1] |
Zhang H P. Introduction to Aircraft Fire Protection Technology. Beijing: Science Press, 2017張和平. 飛機防火技術概論. 北京: 科學出版社, 2017
|
[2] |
Wu H H, Ren C Q, Wang J, et al. Research status and development trend of structural thermal insulation materials. New Chem Mater, 2020, 48(1): 6吳海華, 任超群, 王俊, 等. 結構型隔熱材料研究現狀及發展趨勢. 化工新型材料, 2020, 48(1):6
|
[3] |
Wu D F, Lin L J, Wu W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500 ℃. Acta Aeron Astron Sin, 2020, 41(7): 223612-1吳大方, 林鷺勁, 吳文軍, 等. 1500 ℃極端高溫環境下高超聲速飛行器輕質隔熱材料熱/振聯合試驗. 航空學報, 2020, 41(7): 223612-1
|
[4] |
Li Y Y, Sun Y M, Qiu J L, et al. Moisture absorption characteristics and thermal insulation performance of thermal insulation materials for cold region tunnels. Constr Build Mater, 2020, 237: 117765 doi: 10.1016/j.conbuildmat.2019.117765
|
[5] |
Li Y F, Sio W K, Tsai Y K. A compressive peak strength model for CFRP-confined thermal insulation materials under elevated temperature. Materials, 2020, 13(1): 26
|
[6] |
Zangana S, Epaarachchi J, Ferdous W, et al. A novel hybridised composite sandwich core with glass, Kevlar and Zylon fibres – Investigation under low-velocity impact. Int J Impact Eng, 2020, 137: 103430 doi: 10.1016/j.ijimpeng.2019.103430
|
[7] |
Stadler G, Primetzhofer A, Pinter G, et al. Investigation of fibre orientation and notch support of short glass fibre reinforced thermoplastics. Int J Fatigue, 2020, 131: 105284 doi: 10.1016/j.ijfatigue.2019.105284
|
[8] |
Makhtar S N N M, Pauzi M Z M, Mahpoz N M, et al. Preparation, characterization and performance evaluation of supported zeolite on porous glass hollow fiber for desalination application. Arab J Chem, 2020, 13(1): 3429 doi: 10.1016/j.arabjc.2018.11.015
|
[9] |
Cheon J, Lee M, Kim M. Study on the stab resistance mechanism and performance of the carbon, glass and aramid fiber reinforced polymer and hybrid composites. Compos Struct, 2020, 234: 111690 doi: 10.1016/j.compstruct.2019.111690
|
[10] |
Wiprachtiger M, Haupt M, Heeren N, et al. A framework for sustainable and circular system design: development and application on thermal insulation materials. Resour Conserv Recycl, 2020, 154: 104631 doi: 10.1016/j.resconrec.2019.104631
|
[11] |
Yang W, Liu J P, Wang Y Y, et al. Experimental study on the thermal conductivity of aerogel-enhanced insulating materials under various hygrothermal environments. Energy Build, 2020, 206: 109583 doi: 10.1016/j.enbuild.2019.109583
|
[12] |
Xiu Z X. Introduction to Safety Design and Evaluation Technology of Civil Aircraft System. 2nd Ed. Shanghai: Shanghai Jiao Tong University Press, 2018修忠信. 民用飛機系統安全性設計與評估技術概論. 2版. 上海: 上海交通大學出版社, 2018
|
[13] |
Huang C, Zhang Y. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method. Chin J Aeron, 2014, 27(4): 791 doi: 10.1016/j.cja.2014.03.007
|
[14] |
Ren D P, Xia X L, Ai Q. Analysis of coupled heat transfer in air cooling channel of aeroengine and thermal isolation layer. Acta Aeron Astron Sin, 2005, 26(4): 426 doi: 10.3321/j.issn:1000-6893.2005.04.009任德鵬, 夏新林, 艾青. 飛機發動機冷氣道與隔熱層的耦合傳熱分析. 航空學報, 2005, 26(4):426 doi: 10.3321/j.issn:1000-6893.2005.04.009
|
[15] |
Headley A J, Hileman M B, Robbins A S, et al. Thermal conductivity measurements and modeling of ceramic fiber insulation materials. Int J Heat Mass Transfer, 2019, 129: 1287 doi: 10.1016/j.ijheatmasstransfer.2018.10.060
|
[16] |
Lee S C, Cunnington G R. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transfer, 2000, 14(2): 121 doi: 10.2514/2.6508
|
[17] |
Zhao S Y, Zhang B M, Du S Y. Effects of contact resistance on heat transfer behaviors of fibrous insulation. Chin J Aeron, 2009, 22(5): 569 doi: 10.1016/S1000-9361(08)60143-0
|
[18] |
Zhao S Y, Zhang B M, Du S Y. An inverse analysis to determine conductive and radiative properties of a fibrous medium. J Quant Spectrosc Radiat Transfer, 2009, 110(13): 1111 doi: 10.1016/j.jqsrt.2009.03.022
|
[19] |
Zhao S Y, Zhang B M, He X D. Temperature and pressure dependent effective thermal conductivity of fibrous insulation. Int J Therm Sci, 2009, 48(2): 440 doi: 10.1016/j.ijthermalsci.2008.05.003
|
[20] |
Yang H L, Hu Z J, Sun C C, et al. Pore structure of nano-porous thermal insulating materials and thermal transport via gas phase in their pores. Chin J Eng, 2019, 41(6): 788楊海龍, 胡子君, 孫陳誠, 等. 納米隔熱材料的孔隙結構特征與氣體熱傳輸特性. 工程科學學報, 2019, 41(6):788
|
[21] |
An W G, Sun J H, Liew K M, et al. Flammability and safety design of thermal insulation materials comprising PS foams and fire barrier materials. Mater Des, 2016, 99: 500 doi: 10.1016/j.matdes.2016.03.080
|
[22] |
Huang X J, Sun J H, Ji J, et al. Flame spread over the surface of thermal insulation materials in different environments. Chin Sci Bull, 2011, 56(15): 1617 doi: 10.1007/s11434-010-4187-z
|
[23] |
Chen Z F, Wu C, Yang Y, et al. Preparation of super-fine aviation glass wool and its property study on sound and thermal insulation. J Nanjing Univ Aeron Astron, 2016, 48(1): 10陳照峰, 吳操, 楊勇, 等. 航空級超細玻璃纖維棉氈的制備及隔音隔熱性能研究. 南京航空航天大學學報, 2016, 48(1):10
|
[24] |
Chen Z. The Research on Key Fabrication Process and Properties of Na2O–CaO–B2O3–SiO2 Ultra-fine Glass Wool[Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016陳舟. 1~4 μm級Na2O–CaO–B2O3–SiO2超細離心噴吹玻璃棉關鍵制備技術與性能研究[學位論文]. 南京: 南京航空航天大學, 2016
|
[25] |
China Civil Aviation Administration. CCAR-25 China Civil Aviation Regulations Airworthiness Standards for Transport Aircraft, Appendix F, Part VI: Testing Equipment for Combustion and Flame Propagation Characteristics of Insulation and Sound Insulation. Beijing: China Civil Aviation Press, 2011中國民用航空局. CCAR-25中國民用航空規章運輸類飛機適航標準, 附錄F第Ⅵ部分: 隔熱隔音材料燃燒及火焰蔓延特性試驗設備. 北京: 中國民航出版社, 2011
|