Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet
-
摘要: 研究了不同噴淋距離下連鑄小方坯二冷噴嘴的水量分布,建立了凝固傳熱模型分析了82B鋼連鑄坯的熱行為。該模型特別考慮了二冷區鑄坯表面寬度方向的水流密度分布,并根據鑄坯表面測溫結果進行了模型校正。采用凝固傳熱模型研究了噴嘴噴淋距離對連鑄二冷均勻性的影響。結果表明:噴嘴噴淋距離的增加有助于提高二冷水橫向分布的均勻性,導致鑄坯表面溫度橫向均勻性降低、縱向均勻性提高。這些效果有助于改善鑄坯內部裂紋,但是會對角部裂紋產生不利影響。在二冷區前段噴嘴采用低噴淋距離,二冷區末段采用高噴淋距離,既可以提高鑄坯角部溫度,又能降低表面最大回溫速率,有助于同時改善連鑄坯角部和內部裂紋。在此基礎上,提出了一種連鑄小方坯二冷噴嘴布置方式,即二冷區每段噴嘴噴淋距離沿拉坯方向逐漸增加,該方法有助于提高連鑄坯“縱?橫”冷卻均勻性。Abstract: In the secondary cooling zone of continuous casting, the cooling uniformity of the billet largely depends on water flux distribution and is closely related to crack formation. Nozzle spray distance is the main influencing factor of water flux distribution in continuous casting billet. Therefore, the investigation of the effect of nozzle spray distance on secondary cooling uniformity is of considerable importance in the design and optimization of the secondary cooling system of the billet. In the present study, the water flux distributions of the nozzles used in the secondary cooling zone of continuous casting of the billet were measured under different spray distances. A heat transfer and solidification model was established to analyze the thermal behavior of 82B steel billet. The model specifically considered the distribution of secondary cooling water along the transverse direction and was calibrated via comparing the measured and simulated surface temperatures. The effect of nozzle spray distance on the secondary cooling uniformity of the billet was investigated using the model. Results show that the increase in nozzle spray distance helps to improve the uniformity of secondary cooling water along the transverse direction, resulting in the decreased transverse uniformity and increased longitudinal uniformity of surface temperature. These effects are beneficial for the internal cracks but harmful for the corner cracks of the billet. Increasing the nozzle spray distance in the first segment of the secondary cooling zone and decreasing the nozzle spray distance in the second segment of the secondary cooling zone can decrease the maximum reheating rate and increase the corner temperature, thereby achieving the purpose of simultaneously improving the internal and corner cracks of the billet. On this basis, a nozzle arrangement method, i.e., gradually increasing the nozzle spray distance along the casting direction of each segment in the secondary cooling zone was proposed. This method contributes to the improvement of “longitudinal–transverse” cooling uniformity of the continuous casting billet.
-
圖 7 不同噴淋距離下噴嘴水量分布。(a)噴嘴B,100 mm;(b)噴嘴B,125 mm;(c)噴嘴B,150 mm;(d)噴嘴C,100 mm;(e)噴嘴C,125 mm;(f)噴嘴C,150 mm
Figure 7. Water flux distributions of the nozzles under different spray distances: (a) nozzle B, 100 mm; (b) nozzle B, 125 mm; (c) nozzle B, 150 mm; (d) nozzle C, 100 mm; (e) nozzle C, 125 mm; (f) nozzle C, 150 mm
表 1 82B鋼的主要化學成分(質量分數)
Table 1. Main chemical composition of 82B steel
% C Si Mn P S 0.82 0.20 0.73 0.017 0.004 表 2 現行工藝下噴嘴的噴淋距離和水壓值
Table 2. Spray distance and water pressure of the nozzles under the current process
Nozzle type Spray distance/mm Water pressure/MPa A 125 0.40 B 125 0.80 C 125 0.60 表 3 82B鋼主要連鑄工藝參數
Table 3. Main casting parameters of 82B steel
Item Value Sectional dimension/(mm×mm) 150×150 Casting speed/(m·min?1) 1.8 Pouring temperature/℃ 1503 Water flux of mold cooling/(m3·h?1) 112 Temperature difference between inlet and
outlet of mold water/℃6.02 Water flux of secondary cooling/ (m3·h?1) 35.8 Water temperature/℃ 35 Ambient temperature/℃ 25 259luxu-164 -
參考文獻
[1] Zhang F Q, Wang X H. Simulation of uneven cooling along the width of continuously cast slab in secondary cooling zone. Iron Steel, 2006, 41(9): 30 doi: 10.3321/j.issn:0449-749X.2006.09.007張富強, 王新華. 連鑄板坯二冷區寬度方向不均勻冷卻的研究. 鋼鐵, 2006, 41(9):30 doi: 10.3321/j.issn:0449-749X.2006.09.007 [2] Assuncao C, Tavares R, Oliveira G. Improvement in secondary cooling of continuous casting of round billets through analysis of heat flux distribution. Ironmaking Steelmaking, 2015, 42(1): 1 doi: 10.1179/1743281214Y.0000000190 [3] Brimacombe J K, Sorimachi K. Crack formation in the continuous casting of steel. Metall Trans B, 1977, 8(2): 489 doi: 10.1007/BF02696937 [4] Han C J, Cai K K, Zhao J G, et al. Solidification heat transfer process and control for secondary cooling zone of slab casting. J Univ Sci Technol Beijing, 1999, 21(6): 523 doi: 10.3321/j.issn:1001-053X.1999.06.004韓傳基, 蔡開科, 趙家貴, 等. 板坯連鑄二冷區凝固傳熱過程與控制. 北京科技大學學報, 1999, 21(6):523 doi: 10.3321/j.issn:1001-053X.1999.06.004 [5] Min Y, Liu C J, Wang D Y, et al. Prediction of equiaxed crystal ratio of continuous casting round billet of 37Mn5 steel. J Iron Steel Res, 2011, 23(10): 38閔義, 劉承軍, 王德永, 等. 37Mn5連鑄圓坯中心等軸晶率預測. 鋼鐵研究學報, 2011, 23(10):38 [6] Zeng J, Chen W Q. Effect of secondary cooling conditions on solidification structure and central macrosegregation in continuously cast high-carbon rectangular billet. High Temp Mater Processes, 2015, 34(6): 577 [7] Dou K, Yang Z G, Liu Q, et al. Influence of secondary cooling mode on solidification structure and macro-segregation behavior for high-carbon continuous casting bloom. High Temp Mater Process, 2017, 36(7): 741 doi: 10.1515/htmp-2016-0022 [8] Fan H L, Long M J, Yu S, et al. Uniform secondary cooling pattern for minimizing surface reheating of the strand during round bloom continuous casting. JOM, 2018, 70(2): 237 doi: 10.1007/s11837-017-2679-x [9] Ma J C, Wang B, Zhang D, et al. Optimization of secondary cooling water distribution for improving the billet quality for a small caster. ISIJ Int, 2018, 58(5): 915 doi: 10.2355/isijinternational.ISIJINT-2017-711 [10] Wang X Y, Liu Q, Wang B, et al. Optimal control of secondary cooling for medium thickness slab continuous casting. Ironmaking Steelmaking, 2011, 38(7): 552 doi: 10.1179/1743281211Y.0000000031 [11] Wang X Y, Liu Q, Hu Z G, et al. Influence of nozzle layouts on the secondary cooling effect of medium thickness slabs in continuous casting. J Univ Sci Technol Beijing, 2010, 32(8): 1064王先勇, 劉青, 胡志剛, 等. 噴嘴布置方式對中厚板坯連鑄二次冷卻效果的影響. 北京科技大學學報, 2010, 32(8):1064 [12] Long M J, Chen D F. Study on mitigating center macro-segregation during steel continuous casting process. Steel Res Int, 2011, 82(7): 847 doi: 10.1002/srin.201100085 [13] Long M J, Chen D F, Zhang L F, et al. A mathematical model for mitigating centerline macro segregation in continuous casting slab. Metalurgia Int, 2011, 16(10): 19 [14] Ji C, Luo S, Zhu M Y, et al. Uneven solidification during wide-thick slab continuous casting process and its influence on soft reduction zone. ISIJ Int, 2014, 54(1): 103 doi: 10.2355/isijinternational.54.103 [15] Ji C, Cai Z Z, Wang W L, et al. Effect of transverse distribution of secondary cooling water on corner cracks in wide thick slab continuous casting process. Ironmaking Steelmaking, 2014, 41(5): 360 doi: 10.1179/1743281213Y.0000000161 [16] Zhan X H, Mao J H, Yan J W, et al. Selection and layout of nozzle for ultra-thick slab continuous caster. Iron Steel, 2014, 49(5): 42占賢輝, 毛敬華, 閻建武, 等. 特厚板坯連鑄機二冷區噴嘴選型與布置. 鋼鐵, 2014, 49(5):42 [17] Wang B, Ji Z P, Liu W H, et al. Application of hot strength and ductility test to optimization of secondary cooling system in billet continuous casting process. J Iron Steel Res Int, 2008, 15(4): 16 doi: 10.1016/S1006-706X(08)60137-5 [18] Chaudhuri S, Singh R K, Patwari K, et al. Design and implementation of an automated secondary cooling system for the continuous casting of billets. ISA Trans, 2010, 49(1): 121 doi: 10.1016/j.isatra.2009.09.005 [19] Ramírez-López A, Aguilar-López R, Palomar-Pardavé M, et al. Simulation of heat transfer in steel billets during continuous casting. Int J Miner Metall Mater, 2010, 17(4): 403 doi: 10.1007/s12613-010-0333-5 [20] Yu Y, Luo X C, Zhang H X, et al. Dynamic optimization method of secondary cooling water quantity in continuous casting based on three-dimensional transient nonlinear convective heat transfer equation. Appl Therm Eng, 2019, 160: 113988 doi: 10.1016/j.applthermaleng.2019.113988 [21] Han Y S, Wang X Y, Zhang J S, et al. Comparison of transverse uniform and non-uniform secondary cooling strategies on heat transfer and solidification structure of continuous-casting billet. Metals, 2019, 9(5): 543 doi: 10.3390/met9050543 [22] Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409 [23] Nozaki T, Matsuno J, Murata K, et al. A secondary cooling pattern for preventing surface cracks of continuous casting slab. Trans Iron Steel Inst Jpn, 1978, 18(6): 330 doi: 10.2355/isijinternational1966.18.330 [24] Sediako D, Sediako O, Lin K J. Some aspects of thermal analysis and technology upgrading in steel continuous casting. Can Metall Q, 1999, 38(5): 377 doi: 10.1179/cmq.1999.38.5.377 [25] Kulkarni M S, Subash Babu A. Optimization of continuous casting using simulation. Mater Manuf Processes, 2005, 20(4): 595 doi: 10.1081/AMP-200041874 -