<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

A位摻雜Ru對SPS制備LaCrO3陶瓷導電性的影響及其作為熔鹽中惰性陽極的可行性

焦漢東 王明涌 宋維力 焦樹強

焦漢東, 王明涌, 宋維力, 焦樹強. A位摻雜Ru對SPS制備LaCrO3陶瓷導電性的影響及其作為熔鹽中惰性陽極的可行性[J]. 工程科學學報, 2020, 42(10): 1335-1342. doi: 10.13374/j.issn2095-9389.2019.12.25.005
引用本文: 焦漢東, 王明涌, 宋維力, 焦樹強. A位摻雜Ru對SPS制備LaCrO3陶瓷導電性的影響及其作為熔鹽中惰性陽極的可行性[J]. 工程科學學報, 2020, 42(10): 1335-1342. doi: 10.13374/j.issn2095-9389.2019.12.25.005
JIAO Han-dong, WANG Ming-yong, SONG Wei-li, JIAO Shu-qiang. Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(10): 1335-1342. doi: 10.13374/j.issn2095-9389.2019.12.25.005
Citation: JIAO Han-dong, WANG Ming-yong, SONG Wei-li, JIAO Shu-qiang. Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis[J]. Chinese Journal of Engineering, 2020, 42(10): 1335-1342. doi: 10.13374/j.issn2095-9389.2019.12.25.005

A位摻雜Ru對SPS制備LaCrO3陶瓷導電性的影響及其作為熔鹽中惰性陽極的可行性

doi: 10.13374/j.issn2095-9389.2019.12.25.005
基金項目: 國家自然科學基金資助項目(51904030)
詳細信息
    通訊作者:

    E-mail:jiaohandong_new@163.com

  • 中圖分類號: TQ174.1+3

Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis

More Information
  • 摘要: 鉻酸鑭(LaCrO3)陶瓷材料在高溫熱電和固體氧化物燃料電池(SOFC)等領域具有廣泛的應用價值,然而其燒結性能差、導電率低等不足卻限制了LaCrO3陶瓷的高性能應用。針對上述問題,采用放電等離子燒結(SPS)方式制備致密的LaCrO3塊體。同時,通過A位摻雜Ru元素,以期實現高電導率的摻雜態鉻酸鑭(La1?xRuxCrO3)致密陶瓷。所得樣品的X射線衍射(XRD)及掃描電子顯微(SEM)分析結果表明,無論A位Ru元素含量多少(x=0~0.25, x為Ru的原子含量),SPS所得樣品均為單相鈣鈦礦結構,且具有較高的致密度。此外,高溫電導率測試結果顯示,摻雜態La1?xRuxCrO3的電導率隨著溫度和Ru摻雜量的增加而增加。同時,摻雜前后La1?xRuxCrO3導電性均滿足Arrhenius公式,且摻雜態La1?xRuxCrO3陶瓷的電導活化能明顯低于未摻雜的LaCrO3陶瓷。隨后,將La1?xRuxCrO3置于800 °C熔融CaCl2熔體中,研究其作為熔鹽電解用惰性陽極材料的可行性。結果顯示,摻雜態La1?xRuxCrO3具有較高的抗熔鹽化學腐蝕性,然而其抗熱振性較差,電解之后出現明顯的表層機械脫落現象。上述結果表明,摻雜態La1?xRuxCrO3具備作為惰性析氧陽極材料的化學穩定性,然而需要進一步提高其熱穩定性才能適用于熔鹽電解用惰性陽極。

     

  • 圖  1  摻雜態La1?xRuxCrO3陶瓷制備示意圖

    Figure  1.  Schematic illustration of the preparation of doped La1?xRuxCrO3 ceramic

    圖  2  SPS制備過程中軸向壓縮形變量和燒結溫度隨時間的變化關系

    Figure  2.  Changing law of axial direction shrinkage with temperature during the SPS

    圖  3  摻雜態La1?xRuxCrO3陶瓷XRD圖譜

    Figure  3.  XRD patterns of the doped La1?xRuxCrO3 ceramic

    圖  4  SPS制備所得致密陶瓷SEM 圖譜及Ru元素EDS分析結果。(a)Ru摩爾分數為0的樣品的SEM形貌;(b)不同Ru含量樣品所得EDS結果;(c)Ru摩爾分數為0.05的樣品的SEM(上)及對應的EDS(下)面掃描結果;(d)Ru摩爾分數為0.10的樣品的SEM(上)及對應的EDS(下)面掃描結果;(e)Ru摩爾分數為0.15的樣品的SEM(上)及對應的EDS(下)面掃描結果;(f)Ru摩爾分數為0.20的樣品的SEM(上)及對應的EDS(下)面掃描結果;(g)Ru摩爾分數為0.25的樣品的SEM(上)及對應的EDS(下)面掃描結果

    Figure  4.  SEM images of the ceramics with different Ru contents and EDS mapping of Ru element: (a) SEM image of the SEM without Ru; (b) EDS results of the sample with different Ru contents; (c) SEM (above) and EDS mapping (below) of the sample with Ru of 0.05 mole fraction; (d) SEM (above) and EDS mapping (below) of the sample with Ru of 0.10 mole fraction; (e) SEM (above) and EDS mapping (below) of the sample with Ru of 0.15 mole fraction; (f) SEM (above) and EDS mapping (below) of the sample with Ru of 0.20 mole fraction; (g) SEM (above) and EDS mapping (below) of the sample with Ru of 0.25 mole fraction

    圖  5  樣品性能表征。(a)UV測試試樣禁帶寬度變化;(b)四探針測試用試樣(表面涂布導電銀漿并連接了鉑絲)光學照片;(c和d)試樣電導率隨溫度的變化

    Figure  5.  Performance of the samples: (a) UV results of the samples; (b) digital photos of the samples coating with silver paste and platinum wire; (c and d) conductivity of the samples changing with temperature

    圖  6  La0.85Ru0.15CrO3陶瓷浸入CaCl2熔體中保溫72 h前(a)后(b)的光學照片和SEM圖譜

    Figure  6.  Photos and SEM images of the La0.85Ru0.15CrO3 ceramic before (a) and after (b) immersed in CaCl2 melt for 72 h

    圖  7  (a)電解過程示意圖;(b)La0.85Ru0.15CrO3陶瓷在CaCl2熔體中,2.8 V下電解48 h前(左)、后(右)光學照片

    Figure  7.  (a) Schematic illustration of the cell; (b) digital photos of the La0.85Ru0.15CrO3 ceramic before and after electrolysis for 48 h at 2.8 V

    表  1  摻雜態La1?xRuxCrO3陶瓷電導活化能

    Table  1.   Activation energy of the doped La1?xRuxCrO3 ceramic

    SampleLaCrO3La0.95Ru0.05CrO3La0.90Ru0.10CrO3La0.85Ru0.15CrO3La0.80Ru0.20CrO3La0.75Ru0.25CrO3
    Activation energy/eV0.580.130.140.140.130.14
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Hodes G. Perovskite-based solar cells. Science, 2013, 342(6156): 317 doi: 10.1126/science.1245473
    [2] Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358(6382): 136 doi: 10.1038/358136a0
    [3] Maeno Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite without copper. Nature, 1994, 372(6506): 532 doi: 10.1038/372532a0
    [4] Sfeir J. LaCrO3-based anodes: stability considerations. J Power Sources, 2003, 118(1-2): 276 doi: 10.1016/S0378-7753(03)00099-5
    [5] Zhou J S, Alonso J A, Muonz A, et al. Magnetic structure of LaCrO3 perovskite under high pressure from in situ neutron diffraction. Phys Rev Lett, 2011, 106(5): 057201 doi: 10.1103/PhysRevLett.106.057201
    [6] Hayashi H, Watanabe M, Inaba H. Measurement of thermal expansion coefficient of LaCrO3. Thermochim Acta, 2000, 359(1): 77 doi: 10.1016/S0040-6031(00)00507-4
    [7] Ding X F, Liu Y J, Gao L, et al. Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA-citrate complexing method. J Alloys Compd, 2008, 458(1-2): 346 doi: 10.1016/j.jallcom.2007.03.110
    [8] Jiang Y Z, Gao J F, Liu M F, et al. Synthesis of LaCrO3 films using spray pyrolysis technique. Mater Lett, 2007, 61(8-9): 1908 doi: 10.1016/j.matlet.2006.07.153
    [9] Situmeang R, Supryanto R, Kahar L N A, et al. Characteristics of nano-size LaCrO3 prepared through sol-gel route using pectin as emulsifying agent. Orient J Chem, 2017, 33(4): 1705 doi: 10.13005/ojc/330415
    [10] Wang S, Huang K K, Hou C M, et al. Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO3 (RE= La, Pr, Nd, Sm). Dalton Trans, 2015, 44(39): 17201 doi: 10.1039/C5DT02342D
    [11] Hilpert K, Steinbrech R W, Boroomand F, et al. Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J Eur Ceram Soc, 2003, 23(16): 3009 doi: 10.1016/S0955-2219(03)00097-9
    [12] Mori M, Hiei Y, Sammes N M. Sintering behavior of Ca-or Sr-doped LaCrO3 perovskites including second phase of AECrO4 (AE= Sr, Ca) in air. Solid State Ionics, 2000, 135(1-4): 743 doi: 10.1016/S0167-2738(00)00372-6
    [13] Duran P, Tartaj J, Capel F, et al. Formation, sintering and thermal expansion behaviour of Sr-and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method. J Eur Ceram Soc, 2004, 24(9): 2619 doi: 10.1016/j.jeurceramsoc.2003.09.016
    [14] Liu M F, Zhao L, Dong D H, et al. High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs. J Power Sources, 2008, 177(2): 451 doi: 10.1016/j.jpowsour.2007.11.058
    [15] Oishi M, Yashiro K, Hong J O, et al. Oxygen nonstoichiometry of B-site doped LaCrO3. Solid State Ionics, 2007, 178(3-4): 307 doi: 10.1016/j.ssi.2006.12.018
    [16] Corrêa H P S, Paiva-Santos C O, Setz L F, et al. Crystal structure refinement of Co-doped lanthanum chromites. Powder Diffract, 2008, 23(Suppl1): S18
    [17] Suda E, Pacaud B, Seguelong T, et al. Sintering characteristics and thermal expansion behavior of Li-doped lanthanum chromite perovskites depending upon preparation method and Sr doping. Solid State Ionics, 2002, 151(1-4): 335 doi: 10.1016/S0167-2738(02)00533-7
    [18] Mori M, Sammes N M. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method. Solid State Ionics, 2002, 146(3-4): 301 doi: 10.1016/S0167-2738(01)01020-7
    [19] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361 doi: 10.1038/35030069
    [20] Jiao S Q, Fray D J. Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts. Metall Mater Trans B, 2010, 41(1): 74 doi: 10.1007/s11663-009-9281-8
    [21] Yin H, Mao X, Tang D, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy Environ Sci, 2013, 6(5): 1538 doi: 10.1039/c3ee24132g
    [22] Abdelkader A M, Kilby K T, Cox A, et al. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev, 2013, 113(5): 2863 doi: 10.1021/cr200305x
    [23] Wang S B, Ge J B, Hu Y J, et al. Electrochemical reduction of iron oxide in molten sodium hydroxide based on a Ni0.94Si0.04Al0.02 metallic inert anode. Electrochim Acta, 2013, 87: 148 doi: 10.1016/j.electacta.2012.09.044
    [24] Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall, 2002, 45(4): 322 doi: 10.1179/003258902225007041
    [25] Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16(7): 830 doi: 10.1002/adem.201300409
    [26] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 doi: 10.1007/s10853-006-6555-2
    [27] Jiao H D, Wang J X, Ge J B, et al. Fabrication, characterization and electrical conductivity of Ru-doped LaCrO3 dense perovskites. Solid State Commun, 2016, 231-232: 53 doi: 10.1016/j.ssc.2016.02.003
    [28] El-Sheikh S M, Khedr T M, Zhang G S, et al. Tailored synthesis of anatase-brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV-Vis light. Chem Eng J, 2017, 310: 428 doi: 10.1016/j.cej.2016.05.007
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  3387
  • HTML全文瀏覽量:  1101
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-25
  • 刊出日期:  2020-10-25

目錄

    /

    返回文章
    返回