Influence of Ru doping on the conductivity of LaCrO3 ceramic prepared by SPS and the feasibility of the doped ceramic for an inert anode of molten salt electrolysis
-
摘要: 鉻酸鑭(LaCrO3)陶瓷材料在高溫熱電和固體氧化物燃料電池(SOFC)等領域具有廣泛的應用價值,然而其燒結性能差、導電率低等不足卻限制了LaCrO3陶瓷的高性能應用。針對上述問題,采用放電等離子燒結(SPS)方式制備致密的LaCrO3塊體。同時,通過A位摻雜Ru元素,以期實現高電導率的摻雜態鉻酸鑭(La1?xRuxCrO3)致密陶瓷。所得樣品的X射線衍射(XRD)及掃描電子顯微(SEM)分析結果表明,無論A位Ru元素含量多少(x=0~0.25, x為Ru的原子含量),SPS所得樣品均為單相鈣鈦礦結構,且具有較高的致密度。此外,高溫電導率測試結果顯示,摻雜態La1?xRuxCrO3的電導率隨著溫度和Ru摻雜量的增加而增加。同時,摻雜前后La1?xRuxCrO3導電性均滿足Arrhenius公式,且摻雜態La1?xRuxCrO3陶瓷的電導活化能明顯低于未摻雜的LaCrO3陶瓷。隨后,將La1?xRuxCrO3置于800 °C熔融CaCl2熔體中,研究其作為熔鹽電解用惰性陽極材料的可行性。結果顯示,摻雜態La1?xRuxCrO3具有較高的抗熔鹽化學腐蝕性,然而其抗熱振性較差,電解之后出現明顯的表層機械脫落現象。上述結果表明,摻雜態La1?xRuxCrO3具備作為惰性析氧陽極材料的化學穩定性,然而需要進一步提高其熱穩定性才能適用于熔鹽電解用惰性陽極。Abstract: LaCrO3 ceramic is a promising function material in areas such as high temperature piezoelectric materials and solid oxide fuel cells (SOFC). However, its practical applications are limited by fatal flaws including their low density and poor conductivity. To address these challenges, spark plasma sintering (SPS) was used to prepare the high-density LaCrO3 ceramic. Additionally, Ru, a multivalent metallic element, was doped in the A site of the LaCrO3 ceramic to investigate the conductivity of the La1?xRuxCrO3 (x=0?0.25). X-ray power diffraction (XRD) results and scanning electron microscope images show that the sintered La1?xRuxCrO3 ceramic has a single perovskite phase and high density. The characteristic peak shifting observed in the XRD pattern indicates that the Ru element has been successfully doped in the A site of the LaCrO3 ceramic. Whereas, the results of the Energy dispersive spectrometer (EDS) prove that there is no obvious change in the Ru content before and after sintering by SPS, which indicates that no actual Ru loss can occur during the SPS process at 1600 °C. Moreover, the conductivity of the sintered La1?xRuxCrO3 increases with increasing Ru content and temperature. The results also indicate that there is good linear relationship between ln(σT) and 1/T, demonstrating that the conductivity of the La1?xRuxCrO3 obeys the Arrhenius law. The activation energy of the doped La1?xRuxCrO3 ceramic is smaller than that of the LaCrO3 ceramic. Lastly, the feasibility of the application of doped La1?xRuxCrO3 ceramics as the inert anode of molten salt electrolysis in CaCl2 melt has been investigated at the temperature of 800 °C. These findings demonstrate that the doped La1?xRuxCrO3 ceramic has an excellent chemical corrosion-resistant property. However, it has poor thermal stability, which inhibits its application as an inert anode. Future studies focusing on the improvement of the heat-shock resistance and elucidating the corrosion resistance mechanism of La1?xRuxCrO3 in CaCl2 melt is recommended.
-
Key words:
- Ru doping /
- LaCrO3 ceramic /
- conductivity /
- molten salt electrolysis /
- inert anode
-
圖 4 SPS制備所得致密陶瓷SEM 圖譜及Ru元素EDS分析結果。(a)Ru摩爾分數為0的樣品的SEM形貌;(b)不同Ru含量樣品所得EDS結果;(c)Ru摩爾分數為0.05的樣品的SEM(上)及對應的EDS(下)面掃描結果;(d)Ru摩爾分數為0.10的樣品的SEM(上)及對應的EDS(下)面掃描結果;(e)Ru摩爾分數為0.15的樣品的SEM(上)及對應的EDS(下)面掃描結果;(f)Ru摩爾分數為0.20的樣品的SEM(上)及對應的EDS(下)面掃描結果;(g)Ru摩爾分數為0.25的樣品的SEM(上)及對應的EDS(下)面掃描結果
Figure 4. SEM images of the ceramics with different Ru contents and EDS mapping of Ru element: (a) SEM image of the SEM without Ru; (b) EDS results of the sample with different Ru contents; (c) SEM (above) and EDS mapping (below) of the sample with Ru of 0.05 mole fraction; (d) SEM (above) and EDS mapping (below) of the sample with Ru of 0.10 mole fraction; (e) SEM (above) and EDS mapping (below) of the sample with Ru of 0.15 mole fraction; (f) SEM (above) and EDS mapping (below) of the sample with Ru of 0.20 mole fraction; (g) SEM (above) and EDS mapping (below) of the sample with Ru of 0.25 mole fraction
表 1 摻雜態La1?xRuxCrO3陶瓷電導活化能
Table 1. Activation energy of the doped La1?xRuxCrO3 ceramic
Sample LaCrO3 La0.95Ru0.05CrO3 La0.90Ru0.10CrO3 La0.85Ru0.15CrO3 La0.80Ru0.20CrO3 La0.75Ru0.25CrO3 Activation energy/eV 0.58 0.13 0.14 0.14 0.13 0.14 259luxu-164 -
參考文獻
[1] Hodes G. Perovskite-based solar cells. Science, 2013, 342(6156): 317 doi: 10.1126/science.1245473 [2] Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358(6382): 136 doi: 10.1038/358136a0 [3] Maeno Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite without copper. Nature, 1994, 372(6506): 532 doi: 10.1038/372532a0 [4] Sfeir J. LaCrO3-based anodes: stability considerations. J Power Sources, 2003, 118(1-2): 276 doi: 10.1016/S0378-7753(03)00099-5 [5] Zhou J S, Alonso J A, Muonz A, et al. Magnetic structure of LaCrO3 perovskite under high pressure from in situ neutron diffraction. Phys Rev Lett, 2011, 106(5): 057201 doi: 10.1103/PhysRevLett.106.057201 [6] Hayashi H, Watanabe M, Inaba H. Measurement of thermal expansion coefficient of LaCrO3. Thermochim Acta, 2000, 359(1): 77 doi: 10.1016/S0040-6031(00)00507-4 [7] Ding X F, Liu Y J, Gao L, et al. Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA-citrate complexing method. J Alloys Compd, 2008, 458(1-2): 346 doi: 10.1016/j.jallcom.2007.03.110 [8] Jiang Y Z, Gao J F, Liu M F, et al. Synthesis of LaCrO3 films using spray pyrolysis technique. Mater Lett, 2007, 61(8-9): 1908 doi: 10.1016/j.matlet.2006.07.153 [9] Situmeang R, Supryanto R, Kahar L N A, et al. Characteristics of nano-size LaCrO3 prepared through sol-gel route using pectin as emulsifying agent. Orient J Chem, 2017, 33(4): 1705 doi: 10.13005/ojc/330415 [10] Wang S, Huang K K, Hou C M, et al. Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO3 (RE= La, Pr, Nd, Sm). Dalton Trans, 2015, 44(39): 17201 doi: 10.1039/C5DT02342D [11] Hilpert K, Steinbrech R W, Boroomand F, et al. Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J Eur Ceram Soc, 2003, 23(16): 3009 doi: 10.1016/S0955-2219(03)00097-9 [12] Mori M, Hiei Y, Sammes N M. Sintering behavior of Ca-or Sr-doped LaCrO3 perovskites including second phase of AECrO4 (AE= Sr, Ca) in air. Solid State Ionics, 2000, 135(1-4): 743 doi: 10.1016/S0167-2738(00)00372-6 [13] Duran P, Tartaj J, Capel F, et al. Formation, sintering and thermal expansion behaviour of Sr-and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method. J Eur Ceram Soc, 2004, 24(9): 2619 doi: 10.1016/j.jeurceramsoc.2003.09.016 [14] Liu M F, Zhao L, Dong D H, et al. High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs. J Power Sources, 2008, 177(2): 451 doi: 10.1016/j.jpowsour.2007.11.058 [15] Oishi M, Yashiro K, Hong J O, et al. Oxygen nonstoichiometry of B-site doped LaCrO3. Solid State Ionics, 2007, 178(3-4): 307 doi: 10.1016/j.ssi.2006.12.018 [16] Corrêa H P S, Paiva-Santos C O, Setz L F, et al. Crystal structure refinement of Co-doped lanthanum chromites. Powder Diffract, 2008, 23(Suppl1): S18 [17] Suda E, Pacaud B, Seguelong T, et al. Sintering characteristics and thermal expansion behavior of Li-doped lanthanum chromite perovskites depending upon preparation method and Sr doping. Solid State Ionics, 2002, 151(1-4): 335 doi: 10.1016/S0167-2738(02)00533-7 [18] Mori M, Sammes N M. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method. Solid State Ionics, 2002, 146(3-4): 301 doi: 10.1016/S0167-2738(01)01020-7 [19] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361 doi: 10.1038/35030069 [20] Jiao S Q, Fray D J. Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts. Metall Mater Trans B, 2010, 41(1): 74 doi: 10.1007/s11663-009-9281-8 [21] Yin H, Mao X, Tang D, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy Environ Sci, 2013, 6(5): 1538 doi: 10.1039/c3ee24132g [22] Abdelkader A M, Kilby K T, Cox A, et al. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev, 2013, 113(5): 2863 doi: 10.1021/cr200305x [23] Wang S B, Ge J B, Hu Y J, et al. Electrochemical reduction of iron oxide in molten sodium hydroxide based on a Ni0.94Si0.04Al0.02 metallic inert anode. Electrochim Acta, 2013, 87: 148 doi: 10.1016/j.electacta.2012.09.044 [24] Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall, 2002, 45(4): 322 doi: 10.1179/003258902225007041 [25] Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16(7): 830 doi: 10.1002/adem.201300409 [26] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 doi: 10.1007/s10853-006-6555-2 [27] Jiao H D, Wang J X, Ge J B, et al. Fabrication, characterization and electrical conductivity of Ru-doped LaCrO3 dense perovskites. Solid State Commun, 2016, 231-232: 53 doi: 10.1016/j.ssc.2016.02.003 [28] El-Sheikh S M, Khedr T M, Zhang G S, et al. Tailored synthesis of anatase-brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV-Vis light. Chem Eng J, 2017, 310: 428 doi: 10.1016/j.cej.2016.05.007 -