[1] |
Tilt B. China’s air pollution crisis: science and policy perspectives. Environ Sci Policy, 2019, 92: 275 doi: 10.1016/j.envsci.2018.11.020
|
[2] |
Wada M. Research and development of electric vehicles for clean transportation. J Environ Sci, 2009, 21(6): 745 doi: 10.1016/S1001-0742(08)62335-9
|
[3] |
Andersen P H, Mathews J A, Rask M. Integrating private transport into renewable energy policy: the strategy of creating intelligent recharging grids for electric vehicles. Energy Policy, 2009, 37(7): 2481 doi: 10.1016/j.enpol.2009.03.032
|
[4] |
An F Q, Zhao J Y, Chen L F, et al. Consistency study on 18650 cells used in electric vehicles. Chin J Eng, 2017, 39(1): 107安富強, 趙建源, 陳璐凡, 等. 純電動車用18650電池的一致性研究. 工程科學學報, 2017, 39(1):107
|
[5] |
An F Q, Zhou W N, Li P. Sensitivity of electrodes in a lithium ion cell to temperature and SOC. Chin J Eng, 2018, 40(6): 729安富強, 周偉男, 李平. 鋰離子電芯用電極對溫度與SOC的敏感性. 工程科學學報, 2018, 40(6):729
|
[6] |
Shim J, Kostecki R, Richardson T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sources, 2002, 112(1): 222 doi: 10.1016/S0378-7753(02)00363-4
|
[7] |
Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries. J Power Sources, 2003, 115(1): 137 doi: 10.1016/S0378-7753(02)00618-3
|
[8] |
Zhang Z Q, Wang D D, Zhang C Q, et al. Electric vehicle range extension strategies based on improved AC system in cold climate - a review. Int J Refrig, 2018, 88: 141 doi: 10.1016/j.ijrefrig.2017.12.018
|
[9] |
Khoury G E, Clodic D. Method of test and measurements of fuel consumption due to air conditioning operation on the new prius II hybrid vehicle. SAE Trans, 2005, 114: 2563
|
[10] |
Min H T, Wang X, Zeng X H, et al. Parameter design and computation study for air conditioning system of electric vehicle. Automob Technol, 2009(6): 19 doi: 10.3969/j.issn.1000-3703.2009.06.005閔海濤, 王曉丹, 曾小華, 等. 電動汽車空調系統參數匹配與計算研究. 汽車技術, 2009(6):19 doi: 10.3969/j.issn.1000-3703.2009.06.005
|
[11] |
Zhang Q, Feng M, Chen J, et al. A vehicle mounted super high speed permanent magnet brushless motor drive. Chin J Eng, 2017, 39(10): 1565張前, 馮明, 陳俊, 等. 車載超高速永磁無刷電機驅動器. 工程科學學報, 2017, 39(10):1565
|
[12] |
Chen S C, Wan C C, Wang Y Y. Thermal analysis of lithium-ion batteries. J Power Sources, 2005, 140(1): 111 doi: 10.1016/j.jpowsour.2004.05.064
|
[13] |
Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc, 1985, 132(1): 5 doi: 10.1149/1.2113792
|
[14] |
Chiew J, Chin C S, Toh W D, et al. A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery. Appl Therm Eng, 2019, 147: 450 doi: 10.1016/j.applthermaleng.2018.10.108
|
[15] |
Tian H, Wang W G, Shu G Q, et al. Analysis of heat generation in a Li-ion battery based on a multi-scale and electrochemical-thermal coupled model. J Tianjin Univ, 2016, 49(7): 734田華, 王偉光, 舒歌群, 等. 基于多尺度、電化學?熱耦合模型的鋰離子電池生熱特性分析. 天津大學學報, 2016, 49(7):734
|
[16] |
Liang J L, Gan Y H, Song W F, et al. Thermal-Electrochemical simulation of electrochemical characteristics and temperature difference for a battery module under two-stage fast charging. J Energy Storage, 2020, 29: 101307 doi: 10.1016/j.est.2020.101307
|
[17] |
Zhang L J, Li W B, Cheng H Z. Coupled thermal-electrochemical model of 3D lithium-ion battery. Chin J Power Sources, 2016, 40(7): 1362 doi: 10.3969/j.issn.1002-087X.2016.07.007張立軍, 李文博, 程洪正. 三維鋰離子單電池電化學?熱耦合模型. 電源技術, 2016, 40(7):1362 doi: 10.3969/j.issn.1002-087X.2016.07.007
|
[18] |
Ji F Z, Liu L J, Yang S C, et al. Heating generation model and heat dissipation performance of the power battery in electric vehicle. J Beijing Univ Aeron Astron, 2014, 40(1): 18姬芬竹, 劉麗君, 楊世春, 等. 電動汽車動力電池生熱模型和散熱特性. 北京航空航天大學學報, 2014, 40(1):18
|
[19] |
Wu S. Contrast and analysis on the calculation methods of air conditioning load in automobile. Refrig Air-Cond, 2002, 2(6): 20 doi: 10.3969/j.issn.1009-8402.2002.06.007吳雙. 汽車空調車身熱負荷計算方法分析與比較. 制冷與空調, 2002, 2(6):20 doi: 10.3969/j.issn.1009-8402.2002.06.007
|
[20] |
Wang J Y, Xue C T, Hu X J, et al. Simulation of airflow in passenger compartment based on air-conditioning supply parameters. J Jilin Univ Eng Technol Ed, 2017, 47(1): 50王靖宇, 薛超坦, 胡興軍, 等. 基于空調送風參數的車室內流模擬. 吉林大學學報: 工學版, 2017, 47(1):50
|
[21] |
Ye L, Zhao T W, Chen Y, et al. Establishment and analysis of a simulation model for an electric vehicle’s thermal load. J New Ind, 2019, 9(5): 70葉立, 趙天瑋, 陳宇, 等. 某電動汽車整車熱負荷仿真模型的建立及分析. 新型工業化, 2019, 9(5):70
|
[22] |
Bertotti G. General properties of power losses in soft ferromagnetic materials. IEEE Trans Magn, 1988, 24(1): 621 doi: 10.1109/20.43994
|
[23] |
Chen K, Li Z Y, Chen Y M, et al. Design of parallel air-cooled battery thermal management system through numerical study. Energies, 2017, 10(10): 1677 doi: 10.3390/en10101677
|
[24] |
Chen Y F, Evans J W. Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application. J Electrochem Soc, 1993, 140(7): 1833 doi: 10.1149/1.2220724
|
[25] |
Nelson P, Dees D, Amine K, et al. Modeling thermal management of lithium-ion PNGV batteries. J Power Sources, 2002, 110(2): 349 doi: 10.1016/S0378-7753(02)00197-0
|
[26] |
Park S, Jung D. Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle. J Power Sources, 2013, 227: 191 doi: 10.1016/j.jpowsour.2012.11.039
|
[27] |
Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng, 2019, 149: 192 doi: 10.1016/j.applthermaleng.2018.12.020
|
[28] |
Wang C, Zhang G Q, Meng L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system. Int J Energy Res, 2017, 41(15): 2468 doi: 10.1002/er.3801
|
[29] |
Yang X H, Tan S C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Convers Manage, 2016, 117: 577 doi: 10.1016/j.enconman.2016.03.054
|
[30] |
Lan C J, Xu J, Qiao Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl Therm Eng, 2016, 101: 284 doi: 10.1016/j.applthermaleng.2016.02.070
|
[31] |
Kizilel R, Lateef A, Sabbah R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J Power Sources, 2008, 183(1): 370 doi: 10.1016/j.jpowsour.2008.04.050
|
[32] |
Lv Y F, Situ W F, Yang X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Convers Manage, 2018, 163: 250 doi: 10.1016/j.enconman.2018.02.061
|
[33] |
Weng J W, He Y P, Ouyang D X, et al. Thermal performance of PCM and branch-structured fins for cylindrical power battery in a high-temperature environment. Energy Convers Manage, 2019, 200: 112106 doi: 10.1016/j.enconman.2019.112106
|
[34] |
Ranjbaran Y S, Haghparast S J, Shojaeefard M H, et al. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim, 2019, https://doi.org/10.1007/s10973-019-08989-w
|
[35] |
Jilte R D, Kumar R, Ahmadi M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling. Appl Therm Eng, 2019, 161: 114199 doi: 10.1016/j.applthermaleng.2019.114199
|
[36] |
Yu G Y, Chiang S W, Chen W, et al. Thermal management of a Li-ion battery for electric vehicles using PCM and water-cooling board. Key Eng Mater, 2019, 814: 307 doi: 10.4028/www.scientific.net/KEM.814.307
|
[37] |
Chopra K, Tyagi V V, Pathak A K, et al. Experimental performance evaluation of a novel designed phase change material integrated manifold heat pipe evacuated tube solar collector system. Energy Convers Manage, 2019, 198: 111896 doi: 10.1016/j.enconman.2019.111896
|
[38] |
Chen G, Tang Y, Wan Z P, et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics. Int Commun Heat Mass Transfer, 2019, 100: 12 doi: 10.1016/j.icheatmasstransfer.2018.10.011
|
[39] |
Zhou W J, Li Y, Chen Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe. Appl Therm Eng, 2019, 162: 114215 doi: 10.1016/j.applthermaleng.2019.114215
|
[40] |
Li Q F, Wang Y N, He X, et al. New progress in the theoretical research and application of pulsating heat pipe. Chin J Eng, 2019, 41(9): 1115厲青峰, 王亞楠, 何鑫, 等. 脈動熱管的理論研究與應用新進展. 工程科學學報, 2019, 41(9):1115
|
[41] |
Ye X, Zhao Y H, Quan Z H, et al. Experiment on heat dispersion of lithium-ion battery based on micro heat pipe array. Chin J Eng, 2018, 40(1): 120葉欣, 趙耀華, 全貞花, 等. 微熱管陣列應用于鋰電池模塊的散熱實驗. 工程科學學報, 2018, 40(1):120
|
[42] |
Liang J L, Gan Y H, Li Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers Manage, 2018, 155: 1 doi: 10.1016/j.enconman.2017.10.063
|
[43] |
Gan Y H, Wang J Q, Liang J L. Cooling performance of cylindrical battery pack based on thermal management system with heat pipe. CIESC J, 2018, 69(5): 1964甘云華, 王建欽, 梁嘉林. 基于熱管的圓柱形電池包冷卻性能分析. 化工學報, 2018, 69(5):1964
|
[44] |
Wang J Q, Gan Y H, Liang J L, et al. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng, 2019, 151: 475 doi: 10.1016/j.applthermaleng.2019.02.036
|
[45] |
Liang J L, Gan Y H, Li Y, et al. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures. Energy, 2019, 189: 116233 doi: 10.1016/j.energy.2019.116233
|
[46] |
Gan Y H, Wang J Q, Liang J L, et al. Development of thermal equivalent circuit model of heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng, 2020, 164: 114523 doi: 10.1016/j.applthermaleng.2019.114523
|
[47] |
Jiang Z Y, Qu Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study. Appl Energy, 2019, 242: 378 doi: 10.1016/j.apenergy.2019.03.043
|
[48] |
Qi Z G. Advances on air conditioning and heat pump system in electric vehicles - a review. Renewable Sustainable Energy Rev, 2014, 38: 754 doi: 10.1016/j.rser.2014.07.038
|
[49] |
Lee H S, Lee M Y. Steady state and start-up performance characteristics of air source heat pump for cabin heating in an electric passenger vehicle. Int J Refrig, 2016, 69: 232 doi: 10.1016/j.ijrefrig.2016.06.021
|
[50] |
Ahn J H, Lee J S, Baek C, et al. Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy. Energy, 2016, 115: 67 doi: 10.1016/j.energy.2016.08.104
|
[51] |
Dong J K, Deng S M, Jiang Y Q, et al. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump. Appl Therm Eng, 2012, 37: 380 doi: 10.1016/j.applthermaleng.2011.11.052
|
[52] |
Zhang Z Q, Li W Y, Shi J Y, et al. A study on electric vehicle heat pump systems in cold climates. Energies, 2016, 9(11): 881 doi: 10.3390/en9110881
|
[53] |
Liu C C, Zhang Y, Gao T Y, et al. Performance evaluation of propane heat pump system for electric vehicle in cold climate. Int J Refrig, 2018, 95: 51 doi: 10.1016/j.ijrefrig.2018.08.020
|
[54] |
Yilmazoglu M Z. Experimental and numerical investigation of a prototype thermoelectric heating and cooling unit. Energy Build, 2016, 113: 51 doi: 10.1016/j.enbuild.2015.12.046
|
[55] |
Torregrosa-Jaime B, Payá J, Corberán J M. Application of magnetic cooling in electric vehicles. Sci Technol Built Environ, 2016, 22(5): 544 doi: 10.1080/23744731.2016.1186459
|
[56] |
Wu W, Lin Y M, Gao R X, et al. Design and economic analysis on electrical vehicles air conditioner with energy storage system combined with cold and heat. Refrig Air-Cond, 2011, 11(5): 25 doi: 10.3969/j.issn.1009-8402.2011.05.008吳瑋, 林用滿, 高日新, 等. 冷熱聯合儲能式電動汽車空調系統的設計與經濟性分析. 制冷與空調, 2011, 11(5):25 doi: 10.3969/j.issn.1009-8402.2011.05.008
|
[57] |
Jiang L, Wang R Z, Li J B, et al. Performance analysis on a novel sorption air conditioner for electric vehicles. Energy Convers Manage, 2018, 156: 515 doi: 10.1016/j.enconman.2017.11.077
|
[58] |
Lindh P, Petrov I, Immonen P, et al. Performance of a direct-liquid-cooled motor in an electric bus under different load cycles. IEEE Access, 2019, 7: 86897 doi: 10.1109/ACCESS.2019.2925711
|
[59] |
Wang S P, Wu B X, Wen W Y, et al. Thermal analysis of new energy vehicle motor based on heat pipe-air cooling system. Electr Mach Control Appl, 2018, 45(8): 91 doi: 10.3969/j.issn.1673-6540.2018.08.016王升平, 吳柏禧, 溫萬昱, 等. 基于熱管?風冷系統的新能源汽車電機熱分析. 電機與控制應用, 2018, 45(8):91 doi: 10.3969/j.issn.1673-6540.2018.08.016
|
[60] |
Liu Z Y, Shen C H, Zou J X, et al. Design and optimization for air conditioning system and battery thermal management system of electric vehicle. Refrig Air-Cond, 2018, 18(1): 67 doi: 10.3969/j.issn.1009-8402.2018.01.015劉志勇, 沈長海, 鄒金校, 等. 電動汽車空調與電池熱管理系統設計與匹配. 制冷與空調, 2018, 18(1):67 doi: 10.3969/j.issn.1009-8402.2018.01.015
|
[61] |
Fang C Y, Wang H S, Luo G Q, et al. Research of electric vehicle thermal management system. Electron Des Eng, 2014, 22(4): 137 doi: 10.3969/j.issn.1674-6236.2014.04.040方財義, 汪韓送, 羅高喬, 等. 純電動汽車熱管理系統的研究. 電子設計工程, 2014, 22(4):137 doi: 10.3969/j.issn.1674-6236.2014.04.040
|
[62] |
Tian Z, Gan W, Zhang X L, et al. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle. Appl Therm Eng, 2018, 136: 16 doi: 10.1016/j.applthermaleng.2018.02.093
|
[63] |
Yang X L, Ma Z H, Yang L, et al. Thermal management system of electric vehicle based on heat pump. J Cent South Univ Sci Technol, 2016, 47(8): 2855楊小龍, 馬自會, 楊林, 等. 基于熱泵的純電動轎車熱管理集成開發. 中南大學學報: 自然科學版, 2016, 47(8):2855
|
[64] |
Cen J W, Li Z B, Jiang F M. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management. Energy Sustainable Dev, 2018, 45: 88 doi: 10.1016/j.esd.2018.05.005
|
[65] |
Feng Q, Huang R, Chen F F, et al. Thermal management strategy of battery electric vehicle powertrain based on model predictive control. Mod Mach, 2019(2): 8馮權, 黃瑞, 陳芬放, 等. 基于模型預測的純電動汽車動力總成熱管理策略. 現代機械, 2019(2):8
|
[66] |
Zhang Q G, Xu L F, Li J Q, et al. Performance prediction of proton exchange membrane fuel cell engine thermal management system using 1D and 3D integrating numerical simulation. Int J Hydrogen Energy, 2018, 43(3): 1736 doi: 10.1016/j.ijhydene.2017.10.088
|
[67] |
Liu Y B, Gao Q, Zhang T S, et al. Exploration of interactive thermal influence characteristics of power and air conditioning system based on 1D/3D coupling calculation in electric vehicle underhood. Appl Therm Eng, 2020, 167: 114717 doi: 10.1016/j.applthermaleng.2019.114717
|
[68] |
Hamut H S, Dincer I, Naterer G F. Exergy analysis of a TMS (thermal management system) for range-extended EVs (electric vehicles). Energy, 2012, 46(1): 117 doi: 10.1016/j.energy.2011.12.041
|
[69] |
Javani N, Dincer I, Naterer G F, et al. Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles. Appl Therm Eng, 2014, 64(1-2): 471 doi: 10.1016/j.applthermaleng.2013.11.053
|