<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電動汽車集成熱管理研究進展

姚孟良 甘云華 梁嘉林 李勇

姚孟良, 甘云華, 梁嘉林, 李勇. 電動汽車集成熱管理研究進展[J]. 工程科學學報, 2020, 42(4): 412-422. doi: 10.13374/j.issn2095-9389.2019.12.20.003
引用本文: 姚孟良, 甘云華, 梁嘉林, 李勇. 電動汽車集成熱管理研究進展[J]. 工程科學學報, 2020, 42(4): 412-422. doi: 10.13374/j.issn2095-9389.2019.12.20.003
YAO Meng-liang, GAN Yun-hua, LIANG Jia-lin, LI Yong. Research progress in integrated thermal management of electric vehicles[J]. Chinese Journal of Engineering, 2020, 42(4): 412-422. doi: 10.13374/j.issn2095-9389.2019.12.20.003
Citation: YAO Meng-liang, GAN Yun-hua, LIANG Jia-lin, LI Yong. Research progress in integrated thermal management of electric vehicles[J]. Chinese Journal of Engineering, 2020, 42(4): 412-422. doi: 10.13374/j.issn2095-9389.2019.12.20.003

電動汽車集成熱管理研究進展

doi: 10.13374/j.issn2095-9389.2019.12.20.003
基金項目: 國家自然科學基金資助項目(51776077);廣東省自然科學基金資助項目(2020B1515020040,2018B030311043);廣州市科技計劃資助項目(201707010071)
詳細信息
    通訊作者:

    E-mail: ganyh@scut.edu.cn

  • 中圖分類號: TK16

Research progress in integrated thermal management of electric vehicles

More Information
  • 摘要: 電動汽車具有節能環保的優點,電池、乘員艙和電機驅動系統的熱管理是提高其運行安全性和司乘人員舒適性的關鍵技術。針對電動汽車集成熱管理系統構建過程中的關鍵問題,首先概述了電池、乘員艙和電機驅動系統的產熱模型;其次系統地總結了現有的電池、乘員艙和電機驅動系統的熱管理方法,重點分析了集成熱管理系統的研究現狀、運行控制和系統性能評價;最后總結了當前研究存在的不足并進行了研究展望,指出研究準確的產熱計算模型,發展緊湊高效的集成熱管理系統,在綜合性能評價體系下優化集成熱管理系統的運行控制是未來的主要研究方向。

     

  • 圖  1  電化學?熱耦合模型的建模思路與耦合過程[17]

    Figure  1.  Modeling idea and coupling relationship of electrochemical–thermal coupling model[17]

    圖  2  空調系統及電池熱管理系統原理圖[60]

    Figure  2.  Schematic of air conditioning system and battery thermal management system[60]

    圖  3  整車熱管理系統方案設計[61]

    Figure  3.  Vehicle thermal management system design[61]

    圖  4  電動汽車集成熱管理系統[62]

    Figure  4.  Schematic of proposed EVTMS[62]

    圖  5  純電動轎車整車綜合熱管理系統原理圖[63]

    Figure  5.  Schematic diagram of BEV’s integrated vehicle thermal management system[63]

    圖  6  集成熱管理系統原理圖[64]

    Figure  6.  Schematic of the experimental test rig[64]

    圖  7  純電動汽車發動機艙熱管理系統框架[67]

    Figure  7.  Underhood thermal management system framework of PEV[67]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Tilt B. China’s air pollution crisis: science and policy perspectives. Environ Sci Policy, 2019, 92: 275 doi: 10.1016/j.envsci.2018.11.020
    [2] Wada M. Research and development of electric vehicles for clean transportation. J Environ Sci, 2009, 21(6): 745 doi: 10.1016/S1001-0742(08)62335-9
    [3] Andersen P H, Mathews J A, Rask M. Integrating private transport into renewable energy policy: the strategy of creating intelligent recharging grids for electric vehicles. Energy Policy, 2009, 37(7): 2481 doi: 10.1016/j.enpol.2009.03.032
    [4] An F Q, Zhao J Y, Chen L F, et al. Consistency study on 18650 cells used in electric vehicles. Chin J Eng, 2017, 39(1): 107

    安富強, 趙建源, 陳璐凡, 等. 純電動車用18650電池的一致性研究. 工程科學學報, 2017, 39(1):107
    [5] An F Q, Zhou W N, Li P. Sensitivity of electrodes in a lithium ion cell to temperature and SOC. Chin J Eng, 2018, 40(6): 729

    安富強, 周偉男, 李平. 鋰離子電芯用電極對溫度與SOC的敏感性. 工程科學學報, 2018, 40(6):729
    [6] Shim J, Kostecki R, Richardson T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sources, 2002, 112(1): 222 doi: 10.1016/S0378-7753(02)00363-4
    [7] Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries. J Power Sources, 2003, 115(1): 137 doi: 10.1016/S0378-7753(02)00618-3
    [8] Zhang Z Q, Wang D D, Zhang C Q, et al. Electric vehicle range extension strategies based on improved AC system in cold climate - a review. Int J Refrig, 2018, 88: 141 doi: 10.1016/j.ijrefrig.2017.12.018
    [9] Khoury G E, Clodic D. Method of test and measurements of fuel consumption due to air conditioning operation on the new prius II hybrid vehicle. SAE Trans, 2005, 114: 2563
    [10] Min H T, Wang X, Zeng X H, et al. Parameter design and computation study for air conditioning system of electric vehicle. Automob Technol, 2009(6): 19 doi: 10.3969/j.issn.1000-3703.2009.06.005

    閔海濤, 王曉丹, 曾小華, 等. 電動汽車空調系統參數匹配與計算研究. 汽車技術, 2009(6):19 doi: 10.3969/j.issn.1000-3703.2009.06.005
    [11] Zhang Q, Feng M, Chen J, et al. A vehicle mounted super high speed permanent magnet brushless motor drive. Chin J Eng, 2017, 39(10): 1565

    張前, 馮明, 陳俊, 等. 車載超高速永磁無刷電機驅動器. 工程科學學報, 2017, 39(10):1565
    [12] Chen S C, Wan C C, Wang Y Y. Thermal analysis of lithium-ion batteries. J Power Sources, 2005, 140(1): 111 doi: 10.1016/j.jpowsour.2004.05.064
    [13] Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc, 1985, 132(1): 5 doi: 10.1149/1.2113792
    [14] Chiew J, Chin C S, Toh W D, et al. A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery. Appl Therm Eng, 2019, 147: 450 doi: 10.1016/j.applthermaleng.2018.10.108
    [15] Tian H, Wang W G, Shu G Q, et al. Analysis of heat generation in a Li-ion battery based on a multi-scale and electrochemical-thermal coupled model. J Tianjin Univ, 2016, 49(7): 734

    田華, 王偉光, 舒歌群, 等. 基于多尺度、電化學?熱耦合模型的鋰離子電池生熱特性分析. 天津大學學報, 2016, 49(7):734
    [16] Liang J L, Gan Y H, Song W F, et al. Thermal-Electrochemical simulation of electrochemical characteristics and temperature difference for a battery module under two-stage fast charging. J Energy Storage, 2020, 29: 101307 doi: 10.1016/j.est.2020.101307
    [17] Zhang L J, Li W B, Cheng H Z. Coupled thermal-electrochemical model of 3D lithium-ion battery. Chin J Power Sources, 2016, 40(7): 1362 doi: 10.3969/j.issn.1002-087X.2016.07.007

    張立軍, 李文博, 程洪正. 三維鋰離子單電池電化學?熱耦合模型. 電源技術, 2016, 40(7):1362 doi: 10.3969/j.issn.1002-087X.2016.07.007
    [18] Ji F Z, Liu L J, Yang S C, et al. Heating generation model and heat dissipation performance of the power battery in electric vehicle. J Beijing Univ Aeron Astron, 2014, 40(1): 18

    姬芬竹, 劉麗君, 楊世春, 等. 電動汽車動力電池生熱模型和散熱特性. 北京航空航天大學學報, 2014, 40(1):18
    [19] Wu S. Contrast and analysis on the calculation methods of air conditioning load in automobile. Refrig Air-Cond, 2002, 2(6): 20 doi: 10.3969/j.issn.1009-8402.2002.06.007

    吳雙. 汽車空調車身熱負荷計算方法分析與比較. 制冷與空調, 2002, 2(6):20 doi: 10.3969/j.issn.1009-8402.2002.06.007
    [20] Wang J Y, Xue C T, Hu X J, et al. Simulation of airflow in passenger compartment based on air-conditioning supply parameters. J Jilin Univ Eng Technol Ed, 2017, 47(1): 50

    王靖宇, 薛超坦, 胡興軍, 等. 基于空調送風參數的車室內流模擬. 吉林大學學報: 工學版, 2017, 47(1):50
    [21] Ye L, Zhao T W, Chen Y, et al. Establishment and analysis of a simulation model for an electric vehicle’s thermal load. J New Ind, 2019, 9(5): 70

    葉立, 趙天瑋, 陳宇, 等. 某電動汽車整車熱負荷仿真模型的建立及分析. 新型工業化, 2019, 9(5):70
    [22] Bertotti G. General properties of power losses in soft ferromagnetic materials. IEEE Trans Magn, 1988, 24(1): 621 doi: 10.1109/20.43994
    [23] Chen K, Li Z Y, Chen Y M, et al. Design of parallel air-cooled battery thermal management system through numerical study. Energies, 2017, 10(10): 1677 doi: 10.3390/en10101677
    [24] Chen Y F, Evans J W. Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application. J Electrochem Soc, 1993, 140(7): 1833 doi: 10.1149/1.2220724
    [25] Nelson P, Dees D, Amine K, et al. Modeling thermal management of lithium-ion PNGV batteries. J Power Sources, 2002, 110(2): 349 doi: 10.1016/S0378-7753(02)00197-0
    [26] Park S, Jung D. Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle. J Power Sources, 2013, 227: 191 doi: 10.1016/j.jpowsour.2012.11.039
    [27] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng, 2019, 149: 192 doi: 10.1016/j.applthermaleng.2018.12.020
    [28] Wang C, Zhang G Q, Meng L K, et al. Liquid cooling based on thermal silica plate for battery thermal management system. Int J Energy Res, 2017, 41(15): 2468 doi: 10.1002/er.3801
    [29] Yang X H, Tan S C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Convers Manage, 2016, 117: 577 doi: 10.1016/j.enconman.2016.03.054
    [30] Lan C J, Xu J, Qiao Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl Therm Eng, 2016, 101: 284 doi: 10.1016/j.applthermaleng.2016.02.070
    [31] Kizilel R, Lateef A, Sabbah R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. J Power Sources, 2008, 183(1): 370 doi: 10.1016/j.jpowsour.2008.04.050
    [32] Lv Y F, Situ W F, Yang X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Convers Manage, 2018, 163: 250 doi: 10.1016/j.enconman.2018.02.061
    [33] Weng J W, He Y P, Ouyang D X, et al. Thermal performance of PCM and branch-structured fins for cylindrical power battery in a high-temperature environment. Energy Convers Manage, 2019, 200: 112106 doi: 10.1016/j.enconman.2019.112106
    [34] Ranjbaran Y S, Haghparast S J, Shojaeefard M H, et al. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim, 2019, https://doi.org/10.1007/s10973-019-08989-w
    [35] Jilte R D, Kumar R, Ahmadi M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling. Appl Therm Eng, 2019, 161: 114199 doi: 10.1016/j.applthermaleng.2019.114199
    [36] Yu G Y, Chiang S W, Chen W, et al. Thermal management of a Li-ion battery for electric vehicles using PCM and water-cooling board. Key Eng Mater, 2019, 814: 307 doi: 10.4028/www.scientific.net/KEM.814.307
    [37] Chopra K, Tyagi V V, Pathak A K, et al. Experimental performance evaluation of a novel designed phase change material integrated manifold heat pipe evacuated tube solar collector system. Energy Convers Manage, 2019, 198: 111896 doi: 10.1016/j.enconman.2019.111896
    [38] Chen G, Tang Y, Wan Z P, et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics. Int Commun Heat Mass Transfer, 2019, 100: 12 doi: 10.1016/j.icheatmasstransfer.2018.10.011
    [39] Zhou W J, Li Y, Chen Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe. Appl Therm Eng, 2019, 162: 114215 doi: 10.1016/j.applthermaleng.2019.114215
    [40] Li Q F, Wang Y N, He X, et al. New progress in the theoretical research and application of pulsating heat pipe. Chin J Eng, 2019, 41(9): 1115

    厲青峰, 王亞楠, 何鑫, 等. 脈動熱管的理論研究與應用新進展. 工程科學學報, 2019, 41(9):1115
    [41] Ye X, Zhao Y H, Quan Z H, et al. Experiment on heat dispersion of lithium-ion battery based on micro heat pipe array. Chin J Eng, 2018, 40(1): 120

    葉欣, 趙耀華, 全貞花, 等. 微熱管陣列應用于鋰電池模塊的散熱實驗. 工程科學學報, 2018, 40(1):120
    [42] Liang J L, Gan Y H, Li Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers Manage, 2018, 155: 1 doi: 10.1016/j.enconman.2017.10.063
    [43] Gan Y H, Wang J Q, Liang J L. Cooling performance of cylindrical battery pack based on thermal management system with heat pipe. CIESC J, 2018, 69(5): 1964

    甘云華, 王建欽, 梁嘉林. 基于熱管的圓柱形電池包冷卻性能分析. 化工學報, 2018, 69(5):1964
    [44] Wang J Q, Gan Y H, Liang J L, et al. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng, 2019, 151: 475 doi: 10.1016/j.applthermaleng.2019.02.036
    [45] Liang J L, Gan Y H, Li Y, et al. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures. Energy, 2019, 189: 116233 doi: 10.1016/j.energy.2019.116233
    [46] Gan Y H, Wang J Q, Liang J L, et al. Development of thermal equivalent circuit model of heat pipe-based thermal management system for a battery module with cylindrical cells. Appl Therm Eng, 2020, 164: 114523 doi: 10.1016/j.applthermaleng.2019.114523
    [47] Jiang Z Y, Qu Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study. Appl Energy, 2019, 242: 378 doi: 10.1016/j.apenergy.2019.03.043
    [48] Qi Z G. Advances on air conditioning and heat pump system in electric vehicles - a review. Renewable Sustainable Energy Rev, 2014, 38: 754 doi: 10.1016/j.rser.2014.07.038
    [49] Lee H S, Lee M Y. Steady state and start-up performance characteristics of air source heat pump for cabin heating in an electric passenger vehicle. Int J Refrig, 2016, 69: 232 doi: 10.1016/j.ijrefrig.2016.06.021
    [50] Ahn J H, Lee J S, Baek C, et al. Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy. Energy, 2016, 115: 67 doi: 10.1016/j.energy.2016.08.104
    [51] Dong J K, Deng S M, Jiang Y Q, et al. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump. Appl Therm Eng, 2012, 37: 380 doi: 10.1016/j.applthermaleng.2011.11.052
    [52] Zhang Z Q, Li W Y, Shi J Y, et al. A study on electric vehicle heat pump systems in cold climates. Energies, 2016, 9(11): 881 doi: 10.3390/en9110881
    [53] Liu C C, Zhang Y, Gao T Y, et al. Performance evaluation of propane heat pump system for electric vehicle in cold climate. Int J Refrig, 2018, 95: 51 doi: 10.1016/j.ijrefrig.2018.08.020
    [54] Yilmazoglu M Z. Experimental and numerical investigation of a prototype thermoelectric heating and cooling unit. Energy Build, 2016, 113: 51 doi: 10.1016/j.enbuild.2015.12.046
    [55] Torregrosa-Jaime B, Payá J, Corberán J M. Application of magnetic cooling in electric vehicles. Sci Technol Built Environ, 2016, 22(5): 544 doi: 10.1080/23744731.2016.1186459
    [56] Wu W, Lin Y M, Gao R X, et al. Design and economic analysis on electrical vehicles air conditioner with energy storage system combined with cold and heat. Refrig Air-Cond, 2011, 11(5): 25 doi: 10.3969/j.issn.1009-8402.2011.05.008

    吳瑋, 林用滿, 高日新, 等. 冷熱聯合儲能式電動汽車空調系統的設計與經濟性分析. 制冷與空調, 2011, 11(5):25 doi: 10.3969/j.issn.1009-8402.2011.05.008
    [57] Jiang L, Wang R Z, Li J B, et al. Performance analysis on a novel sorption air conditioner for electric vehicles. Energy Convers Manage, 2018, 156: 515 doi: 10.1016/j.enconman.2017.11.077
    [58] Lindh P, Petrov I, Immonen P, et al. Performance of a direct-liquid-cooled motor in an electric bus under different load cycles. IEEE Access, 2019, 7: 86897 doi: 10.1109/ACCESS.2019.2925711
    [59] Wang S P, Wu B X, Wen W Y, et al. Thermal analysis of new energy vehicle motor based on heat pipe-air cooling system. Electr Mach Control Appl, 2018, 45(8): 91 doi: 10.3969/j.issn.1673-6540.2018.08.016

    王升平, 吳柏禧, 溫萬昱, 等. 基于熱管?風冷系統的新能源汽車電機熱分析. 電機與控制應用, 2018, 45(8):91 doi: 10.3969/j.issn.1673-6540.2018.08.016
    [60] Liu Z Y, Shen C H, Zou J X, et al. Design and optimization for air conditioning system and battery thermal management system of electric vehicle. Refrig Air-Cond, 2018, 18(1): 67 doi: 10.3969/j.issn.1009-8402.2018.01.015

    劉志勇, 沈長海, 鄒金校, 等. 電動汽車空調與電池熱管理系統設計與匹配. 制冷與空調, 2018, 18(1):67 doi: 10.3969/j.issn.1009-8402.2018.01.015
    [61] Fang C Y, Wang H S, Luo G Q, et al. Research of electric vehicle thermal management system. Electron Des Eng, 2014, 22(4): 137 doi: 10.3969/j.issn.1674-6236.2014.04.040

    方財義, 汪韓送, 羅高喬, 等. 純電動汽車熱管理系統的研究. 電子設計工程, 2014, 22(4):137 doi: 10.3969/j.issn.1674-6236.2014.04.040
    [62] Tian Z, Gan W, Zhang X L, et al. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle. Appl Therm Eng, 2018, 136: 16 doi: 10.1016/j.applthermaleng.2018.02.093
    [63] Yang X L, Ma Z H, Yang L, et al. Thermal management system of electric vehicle based on heat pump. J Cent South Univ Sci Technol, 2016, 47(8): 2855

    楊小龍, 馬自會, 楊林, 等. 基于熱泵的純電動轎車熱管理集成開發. 中南大學學報: 自然科學版, 2016, 47(8):2855
    [64] Cen J W, Li Z B, Jiang F M. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management. Energy Sustainable Dev, 2018, 45: 88 doi: 10.1016/j.esd.2018.05.005
    [65] Feng Q, Huang R, Chen F F, et al. Thermal management strategy of battery electric vehicle powertrain based on model predictive control. Mod Mach, 2019(2): 8

    馮權, 黃瑞, 陳芬放, 等. 基于模型預測的純電動汽車動力總成熱管理策略. 現代機械, 2019(2):8
    [66] Zhang Q G, Xu L F, Li J Q, et al. Performance prediction of proton exchange membrane fuel cell engine thermal management system using 1D and 3D integrating numerical simulation. Int J Hydrogen Energy, 2018, 43(3): 1736 doi: 10.1016/j.ijhydene.2017.10.088
    [67] Liu Y B, Gao Q, Zhang T S, et al. Exploration of interactive thermal influence characteristics of power and air conditioning system based on 1D/3D coupling calculation in electric vehicle underhood. Appl Therm Eng, 2020, 167: 114717 doi: 10.1016/j.applthermaleng.2019.114717
    [68] Hamut H S, Dincer I, Naterer G F. Exergy analysis of a TMS (thermal management system) for range-extended EVs (electric vehicles). Energy, 2012, 46(1): 117 doi: 10.1016/j.energy.2011.12.041
    [69] Javani N, Dincer I, Naterer G F, et al. Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles. Appl Therm Eng, 2014, 64(1-2): 471 doi: 10.1016/j.applthermaleng.2013.11.053
  • 加載中
圖(7)
計量
  • 文章訪問數:  3445
  • HTML全文瀏覽量:  1547
  • PDF下載量:  200
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-20
  • 刊出日期:  2020-04-01

目錄

    /

    返回文章
    返回