<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

堿激發水泥?磷渣固化性能及與含硫尾砂的相容性

姜關照 吳愛祥 王貽明

姜關照, 吳愛祥, 王貽明. 堿激發水泥?磷渣固化性能及與含硫尾砂的相容性[J]. 工程科學學報, 2020, 42(8): 963-971. doi: 10.13374/j.issn2095-9389.2019.12.19.002
引用本文: 姜關照, 吳愛祥, 王貽明. 堿激發水泥?磷渣固化性能及與含硫尾砂的相容性[J]. 工程科學學報, 2020, 42(8): 963-971. doi: 10.13374/j.issn2095-9389.2019.12.19.002
JIANG Guan-zhao, WU Ai-xiang, WANG Yi-ming. Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings[J]. Chinese Journal of Engineering, 2020, 42(8): 963-971. doi: 10.13374/j.issn2095-9389.2019.12.19.002
Citation: JIANG Guan-zhao, WU Ai-xiang, WANG Yi-ming. Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings[J]. Chinese Journal of Engineering, 2020, 42(8): 963-971. doi: 10.13374/j.issn2095-9389.2019.12.19.002

堿激發水泥?磷渣固化性能及與含硫尾砂的相容性

doi: 10.13374/j.issn2095-9389.2019.12.19.002
基金項目: 國家自然科學基金資助項目(51674012);國家重點研發計劃資助項目(2017YFC0602903)
詳細信息
    通訊作者:

    E-mail:ustbwym@126.com

  • 中圖分類號: TD853

Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings

More Information
  • 摘要: 基于磷渣材料水化特性和礦山充填應用條件,研究堿激發水泥?磷渣共同作為膠凝材料(CPCM)膠結含硫尾砂的可行性。選取生石灰、NaOH、Na2SiO3作為激發劑,開展CPCM固化性能試驗,并評價CPCM與含硫尾砂相容性。研究結果表明:磷渣摻量為水泥的100%、生石灰為3%時,CPCM終凝時間300 min,28 d抗壓強度40.6 MPa,基本可等量替代P.O 42.5水泥應用于礦山嗣后充填。Na2SiO3摻量4%時,CPCM終凝時間比水泥縮短39.3%,7 d強度提高31.1%。與水泥相比,CPCM使充填體凝結時間縮短8 h左右,且固化28 d后強度未出現劣化,表明CPCM與含硫尾砂相容性好。X射線衍射、掃描電鏡和電子能譜分析表明,CPCM水化產物主要為Ca(OH)2和C?S?H。磷渣不斷水化,導致Ca(OH)2含量下降,逐漸形成致密的低Ca/Si摩爾比C?S?H,這不僅保證了CPCM后期強度增加,而且避免了充填體強度劣化。

     

  • 圖  1  磷渣X射線衍射圖譜

    Figure  1.  XRD pattern of phosphorus slag (PS)

    圖  2  磷渣和全尾砂粒徑分布

    Figure  2.  Particle size distribution of PS and tailings

    圖  3  磷渣摻量對CPCM固化性能影響。(a)凝結時間;(b)抗壓強度

    Figure  3.  Effect of PS mass fraction on the cementitious material (CPCM) hardening properties: (a) setting time; (b) strength

    圖  4  生石灰摻量對CPCM固化性能影響。(a)凝結時間;(b)抗壓強度

    Figure  4.  Effect of quicklime mass fraction on the CPCM hardening properties: (a) setting time; (b) strength

    圖  5  NaOH摻量對CPCM固化性能影響。(a)凝結時間;(b)抗壓強度

    Figure  5.  Effect of NaOH mass fraction on the CPCM hardening properties: (a) setting time; (b) strength

    圖  6  Na2SiO3摻量對CPCM固化性能影響。(a)凝結時間;(b)抗壓強度

    Figure  6.  Effect of Na2SiO3 mass fraction on the CPCM hardening properties: (a) setting time; (b) strength

    圖  7  CPCM類型對CPTB固化性能影響。(a)凝結時間;(b)抗壓強度

    Figure  7.  Effect of CPCM type on the CPTB hardening properties: (a) setting time; (b) strength

    圖  8  水化產物X射線衍射圖譜。(a)CPCM;(b)CPTB

    Figure  8.  XRD patterns of hydration products: (a) CPCM; (b) CPTB

    圖  9  水化產物掃描電鏡圖。(a)CPD-28 d;(b)DL3-28 d;(c)DN4-7 d;(d)CPTB-1#-90 d;(e)CPTB-2#-90 d;(f)CPTB-3#-90d

    Figure  9.  SEM images of hydration products: (a) CPD-28 d; (b) DL3-28 d; (c) DN4-7 d; (d) CPTB-1#-90 d; (e) CPTB-2#-90 d; (f) CPTB-3#-90d

    圖  10  圖9所標各處水化產物電子圖譜。(a)A處;(b)B處;(c)C處

    Figure  10.  EDS spectra of hydration products of the marked areas in Fig. 9: (a) A; (b) B; (c) C

    圖  11  50個監測點Ca/Si比。(a)B處;(b)C處

    Figure  11.  Ca/Si ratio of 50 points: (a) B; (b) C

    表  1  水泥、全尾砂和磷渣化學成分

    Table  1.   Chemical compositions of cement, tailings, and phosphorus slag

    Raw materialsMass fraction/%
    CaOSiO2Al2O3P2O5Fe2O3MgO
    Cement62.3520.185.220.483.272.16
    Tailings6.9517.2610.0316.340.18
    Phosphorus slag (PS)43.1837.375.783.930.252.57
    下載: 導出CSV

    表  2  CPCM配合比設計

    Table  2.   Design of CPCM mix ratio

    Name of mix ratioMass fraction of phosphorus slag /%Mass fraction of activators /%Type of activators
    CPO00Pure cement paste
    CPA250
    CPB50
    CPC75
    CPD100
    DL31003Quicklime
    DL66
    DL99
    DH21002NaOH (by Na2O mass fraction)
    DH44
    DH66
    DN21002Na2SiO3 (by Na2O mass fraction)
    DN44
    DN66
    下載: 導出CSV

    表  3  CPTB配合比設計

    Table  3.   Design of CPTB mix ratio

    Name of filing bodyType of bindersMass fraction of paste/%Binder sand ratio
    CPTB?1#CPO761∶12
    CPTB?2#DL3761∶12
    CPTB?3#DN4761∶12
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Jiang M, Wang C H, Hang X F, et al. Secondary pollution prediction of recycling process of yellow phosphorus slag by moulding under thermal state. J Central S Univ Sci Technol, 2016, 47(3): 1078

    蔣明, 王重華, 黃小鳳, 等. 黃磷爐渣熱態成型資源化過程的二次污染預測. 中南大學學報: 自然科學版, 2016, 47(3):1078
    [2] Chen J S, Zhao B, Wang X M, et al. Cemented backfilling performance of yellow phosphorus slag. Int J Miner Metall Mater, 2010, 17(1): 121 doi: 10.1007/s12613-010-0121-2
    [3] Wu Y M, Zhang Q, Li L J. Effect of phosphorus slag on retarding properties of ordinary portland cement. Bull Chin Ceram Soc, 2019, 38(4): 1177

    吳一鳴, 張覃, 李龍江. 磷渣對普通硅酸鹽水泥緩凝特性影響的研究. 硅酸鹽通報, 2019, 38(4):1177
    [4] Xu C W, Du Q S. Influence of phosphorus slag replacing sand on properties of cement-based grouting material. Concrete, 2018(10): 85 doi: 10.3969/j.issn.1002-3550.2018.10.021

    徐長偉, 杜秋實. 磷渣代砂對水泥基灌漿料性能的影響. 混凝土, 2018(10):85 doi: 10.3969/j.issn.1002-3550.2018.10.021
    [5] Wang T, Song K P, Peng Z B, et al. Experiment study of low-clinker phosphorus slag based cement. Bull Chin Ceram Soc, 2019, 38(6): 1805

    王濤, 宋科鵬, 彭澤斌, 等. 少熟料磷渣基水泥的研究. 硅酸鹽通報, 2019, 38(6):1805
    [6] Zhu L P. Experimental study on modified phosphorous slag based cementing material with lime. Non-Metallic Mines, 2019, 42(4): 28 doi: 10.3969/j.issn.1000-8098.2019.04.008

    朱麗蘋. 石灰改性磷渣基膠凝材料的試驗研究. 非金屬礦, 2019, 42(4):28 doi: 10.3969/j.issn.1000-8098.2019.04.008
    [7] Peng Y Z, Zhang J, Xu G, et al. Preparation and microstructure of phosphorous slag-based cementitious materials with high early strength. J China Three Gorges Univ Nat Sci, 2015, 37(6): 15

    彭艷周, 張俊, 徐港, 等. 快硬早強磷渣基膠凝材料的制備及其微觀結構研究. 三峽大學學報: 自然科學版, 2015, 37(6):15
    [8] Chen X, Yang H Q, Zhang J F, et al. Pozzolanic activation and analysis of phosphorus slag powder. Concrete, 2015(10): 82 doi: 10.3969/j.issn.1002-3550.2015.10.021

    陳霞, 楊華全, 張建峰, 等. 磷渣粉的火山灰活性激發及分析. 混凝土, 2015(10):82 doi: 10.3969/j.issn.1002-3550.2015.10.021
    [9] Chen X, Yang H Q, Shi Y, et al. Hydration characteristics of cement-based materials with incorporation of phosphorus slag powder. J Build Mater, 2016, 19(4): 619 doi: 10.3969/j.issn.1007-9629.2016.04.002

    陳霞, 楊華全, 石妍, 等. 磷渣粉水泥基復合膠凝體系的水化特性. 建筑材料學報, 2016, 19(4):619 doi: 10.3969/j.issn.1007-9629.2016.04.002
    [10] Cheng L, Zhu C G, Sheng G H. Mechanical properties and microstructures of alkali-activated phosphorous slag cement. J Chin Ceram Soc, 2006, 34(5): 604 doi: 10.3321/j.issn:0454-5648.2006.05.019

    程麟, 朱成桂, 盛廣宏. 堿磷渣水泥的力學性能及微觀結構. 硅酸鹽學報, 2006, 34(5):604 doi: 10.3321/j.issn:0454-5648.2006.05.019
    [11] Hao J G, Guo C Z, Zhou W B, et al. Effect of CaO on hydration and hardening of phosphorous slag Portland cement. Cement, 2010(11): 6 doi: 10.3969/j.issn.1002-9877.2010.11.002

    郝晉高, 郭成洲, 周衛兵, 等. CaO對磷渣硅酸鹽水泥水化硬化影響的試驗研究. 水泥, 2010(11):6 doi: 10.3969/j.issn.1002-9877.2010.11.002
    [12] Song J W, Fang K H, Liu D M, et al. Research on fractal characteristics of phosphate slag?cement paste pore with MIP. Eng J Wuhan Univ, 2008, 41(6): 41

    宋軍偉, 方坤河, 劉冬梅, 等. 壓汞測孔評價磷渣?水泥漿體材料孔隙分形特征的試驗. 武漢大學學報: 工學版, 2008, 41(6):41
    [13] Zhang M, Ma Q M, Guo R X, et al. Utilization of phosphorous slag in cement concrete. Bull Chin Ceram Soc, 2019, 38(8): 2464

    張敏, 馬倩敏, 郭榮鑫, 等. 磷渣在水泥混凝土中的資源化利用. 硅酸鹽通報, 2019, 38(8):2464
    [14] Xu Y H. Study on influence of sulphide in tailings on quality of backfill. Min Res Dev, 2009(5): 4

    許毓海. 尾砂中硫化物對充填體質量影響研究. 礦業研究與開發, 2009(5):4
    [15] Kesimal A, Yilmaz E, Ercikdi B. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cem Concr Res, 2004, 34(10): 1817 doi: 10.1016/j.cemconres.2004.01.018
    [16] Jiang G Z, Wu A X, Li H, et al. Long-term strength performance of sulfur tailings filling and its affecting factors. J Central S Univ Sci Technol, 2018, 49(6): 1504

    姜關照, 吳愛祥, 李紅, 等. 含硫尾砂充填體長期強度性能及其影響因素. 中南大學學報: 自然科學版, 2018, 49(6):1504
    [17] Jiang G Z, Wu A X, Wang Y M, et al. Effect of compound activator on copper slag activity and preparation of filling materials. Chin J Eng, 2017, 39(9): 1305

    姜關照, 吳愛祥, 王貽明, 等. 復合激發劑對銅爐渣活性影響及充填材料制備. 工程科學學報, 2017, 39(9):1305
    [18] Chen M, Sun Z P, Liu J S. State of the art review on activating techniques and mechanism of phosphorus slag. Mater Rev, 2013, 27(21): 112

    陳明, 孫振平, 劉建山. 磷渣活性激發方法及機理研究進展. 材料導報, 2013, 27(21):112
    [19] Xu B, Pu X C. Study on sulfate-resistance property of solid alkaline as cement. China Build Mater Sci Technol, 1997(5): 11

    徐彬, 蒲心誠. 固態堿組分堿礦渣水泥抗硫酸鹽性能研究. 中國建材科技, 1997(5):11
    [20] Zhang X J. The Microstructure Formation and Evolution of C−S−H Gel in Cement Paste under the Attack of Sulfate in Weak Alkaline[Dissertation]. Hefei: Anhui Jianzhu University, 2019

    張曉佳. 弱堿環境下硫酸鹽侵蝕水泥石中C−S−H凝膠結構的形成與演變[學位論文]. 合肥: 安徽建筑大學, 2019
    [21] He X Y, Zheng Z Q, Su Y, et al. Study on the properties of phosphorous slag-blast furnace slag-cement composite cementitious materials activated by acetylene slag. Bull Chin Ceram Soc, 2019, 38(3): 889

    賀行洋, 鄭正旗, 蘇英, 等. 電石渣激發磷渣?礦渣?水泥復合膠凝材料的性能研究. 硅酸鹽通報, 2019, 38(3):889
    [22] Liu J, He W, Wang D M. Long-term characteristics of the hydration product of cement-phosphorus slag composite binder under steam curing condition. J Chin Electron Microsc Soc, 2017, 36(6): 571 doi: 10.3969/j.issn.1000-6281.2017.06.009

    劉進, 何偉, 王棟民. 蒸養條件下水泥-磷渣復合膠凝材料的水化產物的長齡期特征. 電子顯微學報, 2017, 36(6):571 doi: 10.3969/j.issn.1000-6281.2017.06.009
    [23] Song H, Chen J K, Jiang J Y. An internal expansive stress model of concrete under sulfate attack. Acta Mech Solida Sin, 2016, 29(6): 610 doi: 10.1016/S0894-9166(16)30331-7
    [24] Liu L, Zhu C, Chen G L, et al. Erosion mechanism of sulfur-bearing tailings in micro-scale. J Xian Univ Sci Technol, 2018, 38(4): 553

    劉浪, 朱超, 陳國龍, 等. 微觀尺度下含硫尾砂膠結充填體侵蝕機理. 西安科技大學學報, 2018, 38(4):553
    [25] Liu R G, Yan P Y. Hydration characteristics of slag in cement-slag complex binder. J Chin Ceram Soc, 2012, 40(8): 1112

    劉仍光, 閻培渝. 水泥?礦渣復合膠凝材料中礦渣的水化特性. 硅酸鹽學報, 2012, 40(8):1112
  • 加載中
圖(11) / 表(3)
計量
  • 文章訪問數:  871
  • HTML全文瀏覽量:  945
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-19
  • 刊出日期:  2020-09-11

目錄

    /

    返回文章
    返回