<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

7075鋁合金板材熱沖壓成形中的高溫摩擦

吳佳松 蔣怡涵 王武榮 韋習成

吳佳松, 蔣怡涵, 王武榮, 韋習成. 7075鋁合金板材熱沖壓成形中的高溫摩擦[J]. 工程科學學報, 2020, 42(12): 1631-1638. doi: 10.13374/j.issn2095-9389.2019.12.11.004
引用本文: 吳佳松, 蔣怡涵, 王武榮, 韋習成. 7075鋁合金板材熱沖壓成形中的高溫摩擦[J]. 工程科學學報, 2020, 42(12): 1631-1638. doi: 10.13374/j.issn2095-9389.2019.12.11.004
WU Jia-song, JIANG Yi-han, WANG Wu-rong, WEI Xi-cheng. High-temperature friction of 7075 aluminum alloy sheet during hot stamping[J]. Chinese Journal of Engineering, 2020, 42(12): 1631-1638. doi: 10.13374/j.issn2095-9389.2019.12.11.004
Citation: WU Jia-song, JIANG Yi-han, WANG Wu-rong, WEI Xi-cheng. High-temperature friction of 7075 aluminum alloy sheet during hot stamping[J]. Chinese Journal of Engineering, 2020, 42(12): 1631-1638. doi: 10.13374/j.issn2095-9389.2019.12.11.004

7075鋁合金板材熱沖壓成形中的高溫摩擦

doi: 10.13374/j.issn2095-9389.2019.12.11.004
基金項目: 國家自然科學基金資助項目(51475280)
詳細信息
    通訊作者:

    E-mail: wrwang@shu.edu.cn

  • 中圖分類號: TG115.5

High-temperature friction of 7075 aluminum alloy sheet during hot stamping

More Information
  • 摘要: 采用自制的板帶高溫摩擦試驗機模擬實際固溶–沖壓–淬火一體化熱成形工藝下7075鋁合金的高溫摩擦過程,分別對上下摩擦頭進行冷卻和加熱以模擬實際熱沖壓過程對模具和壓邊圈的冷卻和加熱,分析了下模加熱溫度、法向載荷和滑動速度對7075鋁合金摩擦行為及磨損機理的影響。結果表明:鋁合金摩擦系數隨著下模加熱溫度的升高而增大,磨損機制由300 ℃時的黏著磨損轉變為500 ℃時的黏著磨損、氧化磨損和磨粒磨損;施加法向載荷越大,摩擦系數越大,不同載荷下磨損機制均為黏著磨損及輕微的磨粒磨損,且隨著載荷增大,黏著磨損程度有所加深;高滑動速度導致了磨損表面局部氧化物的生成,使摩擦系數隨著滑動速度增大而減小,滑動速度為30 mm·s?1時,磨損機制主要是氧化磨損、磨粒磨損和黏著磨損。

     

  • 圖  1  板帶高溫摩擦試驗機(a)及加載系統細節(b)

    Figure  1.  Photographs of the high-temperature strip friction tester (a) and details of the loading system (b)

    1—stepping motor; 2—ball screw; 3—force sensor; 4—lever; 5—furnace; 6—controller; 7—recorder; 8—temperature control box

    圖  2  摩擦工具示意圖

    Figure  2.  Schematic representation of the friction tools

    圖  3  不同下模加熱溫度下7075鋁合金的摩擦系數

    Figure  3.  Friction coefficient of 7075 aluminum alloy at different temperatures of lower die

    圖  4  不同下模加熱溫度下7075鋁合金的磨損表面形貌。(a)300 ℃;(b)400 ℃;(c)500 ℃

    Figure  4.  SEM micrographs of the worn surfaces of 7075 aluminum alloy at different temperatures of lower die: (a) 300 ℃;(b) 400 ℃;(c) 500 ℃

    圖  5  不同法向載荷下7075鋁合金的摩擦系數

    Figure  5.  Friction coefficient of 7075 under different normal loads

    圖  6  不同法向載荷下7075鋁合金的磨損表面形貌。(a)540 N;(b)680 N;(c)820??? N

    Figure  6.  SEM micrographs of the worn surfaces of 7075 aluminum alloy under different normal loads: (a) 540 N;(b) 680 N;(c) 820??? N

    圖  7  不同滑動速度下7075鋁合金的摩擦系數

    Figure  7.  Friction coefficients of 7075 aluminum alloy at different sliding speeds

    圖  8  不同滑動速度下7075鋁合金的磨損表面形貌及EDS分析。(a)滑動速度為10 mm·s?1時的試樣磨損形貌;(b)滑動速度為20 mm·s?1時的試樣磨損形貌;(c)滑動速度為20 mm·s?1時的EDS分析;(d)滑動速度為30 mm·s?1時的試樣磨損形貌;(e)滑動速度為30 mm·s?1時的EDS分析

    Figure  8.  SEM micrographs of the worn surfaces and EDS analyses of 7075 aluminum alloy at different sliding speeds: (a) wear morphology of specimen when sliding speed is 10 mm·s?1; (b) wear morphology of specimen when sliding speed is 20 mm·s?1; (c) EDS analysis when sliding speed is 20 mm·s?1; (d) wear morphology of specimen when sliding speed is 30 mm·s?1; (e) EDS analysis when sliding speed is 30 mm·s?1

    表  1  7075鋁合金的化學成分(質量分數)

    Table  1.   Chemical composition of 7075 aluminum alloy %

    ElementZnMgCuCrFe
    Mass fraction6.102.541.200.200.20
    下載: 導出CSV

    表  2  H13鋼的化學成分(質量分數)

    Table  2.   Chemical composition of H13 steel %

    ElementCSiMnCrPSMoBV
    Mass fraction0.3910.9110.3745.1800.0150.0151.4500.0030.953
    下載: 導出CSV

    表  3  高溫摩擦試驗參數

    Table  3.   Experimental parameters of the high-temperature friction test

    Test groupTemperature of lower
    die /℃
    Normal load /
    N
    Sliding speed /
    (mm·s?1)
    1300, 400, 50054010
    2400540, 680, 82010
    340054010, 20, 30
    下載: 導出CSV

    表  4  圖4(c)中磨粒的EDS分析(質量分數)

    Table  4.   EDS analysis of particles in Fig. 4(c) %

    Test pointOMgAlFeCu
    121.273.5024.494.8845.86
    222.604.9033.405.2833.83
    下載: 導出CSV

    表  5  不同載荷下試樣磨損表面元素的EDS分析(質量分數)

    Table  5.   EDS analysis of worn surface elements under different normal loads %

    Test pointMgAlFeCuZn
    A1.4293.560.931.602.49
    B4.6988.671.521.513.61
    C2.4788.402.581.604.95
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chegini M, Fallahi A, Shaeri M H. Effect of equal channel angular pressing (ECAP) on wear behavior of Al–7075 alloy. Procedia Mater Sci, 2015, 11: 95 doi: 10.1016/j.mspro.2015.11.116
    [2] Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Insights into the behaviour of tool steel-aluminium alloy tribopair at different temperatures. Tribol Int, 2018, 119: 567 doi: 10.1016/j.triboint.2017.11.041
    [3] Hou L G, Zhao F, Zhuang L Z, et al. Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties. Chin J Eng, 2017, 39(3): 432

    侯隴剛, 趙鳳, 莊林忠, 等. 基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理. 工程科學學報, 2017, 39(3):432
    [4] Ma Y W, Wang B Y, Xiao W C, et al. Effect of solution and aging processes on the mechanical properties of 6016 aluminum alloy and multi-objective optimization. Chin J Eng, 2017, 39(1): 75

    馬嚴瑋, 王寶雨, 校文超, 等. 固溶時效工藝對6016鋁合金力學性能的影響及多目標優化. 工程科學學報, 2017, 39(1):75
    [5] Laurino A, Andrieu E, Harouard J P, et al. Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications. Mater Des, 2014, 53: 236 doi: 10.1016/j.matdes.2013.06.079
    [6] Liu Q, Chen S C, Gu R Y, et al. Effect of heat treatment conditions on mechanical properties and precipitates in sheet metal hot stamping of 7075 aluminum alloy. J Mater Eng Perform, 2018, 27(9): 4423 doi: 10.1007/s11665-018-3588-z
    [7] Shamsipur A, Asadkarami S. Microstructure and mechanical properties of copper surface composite layers reinforced by nano and microscale SiC particles via friction stir processing. Adv Compos Mater, 2019, 28(6): 591 doi: 10.1080/09243046.2019.1623453
    [8] Andreatta F, Terryn H, de Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy. Electrochim Acta, 2004, 49(17-18): 2851 doi: 10.1016/j.electacta.2004.01.046
    [9] Yang X M, Wang B Y, Xiao W C, et al. Prediction of forming limit curve of 6016 aluminum alloy based on M–K theory. Chin J Eng, 2018, 40(4): 485

    楊曉明, 王寶雨, 校文超, 等. 基于M–K理論的6016鋁合金成形極限曲線預測. 工程科學學報, 2018, 40(4):485
    [10] Yang X Y, Lang L H, Liu K N, et al. Prediction of forming limit diagram of AA7075–O aluminum alloy sheet based on modified M–K model. J Beijing Univ Aeron Astron, 2015, 41(4): 675

    楊希英, 郎利輝, 劉康寧, 等. 基于修正M–K模型的鋁合金板材成形極限圖預測. 北京航空航天大學學報, 2015, 41(4):675
    [11] Du P H, Lang L H, Liu B S, et al. Theoretical prediction and parameter influence of FLDs based on M–K model. J Plast Eng, 2011, 18(5): 84 doi: 10.3969/j.issn.1007-2012.2011.05.017

    杜平海, 郎利輝, 劉寶勝, 等. 基于M–K模型的成形極限預測及參數影響. 塑性工程學報, 2011, 18(5):84 doi: 10.3969/j.issn.1007-2012.2011.05.017
    [12] Ma G S, Wan M, Wu X D. Theoretical prediction of FLDs for Al-Li alloy at elevated temperature based on M–K model. Chin J Nonferrous Met, 2008, 18(6): 980 doi: 10.3321/j.issn:1004-0609.2008.06.005

    馬高山, 萬敏, 吳向東. 基于M–K模型的鋁鋰合金熱態下成形極限預測. 中國有色金屬學報, 2008, 18(6):980 doi: 10.3321/j.issn:1004-0609.2008.06.005
    [13] He Z B, Fan X B, Yuan S J. Review of hot forming-quenching integrated process of aluminum alloy. J Netshape Form Eng, 2014, 6(5): 37 doi: 10.3969/j.issn.1674-6457.2014.05.007

    何祝斌, 凡曉波, 苑世劍. 鋁合金板材熱成形-淬火一體化工藝研究進展. 精密成形工程, 2014, 6(5):37 doi: 10.3969/j.issn.1674-6457.2014.05.007
    [14] Chen S C, Lai S Y, Gu R Y, et al. Aluminum Alloy Sheet Molding and Quenching Compound Forming Method and Integrated Device: China Patent, CN201710291517.4. 2017-10-27

    陳世超, 賴思旸, 顧瑞瑩, 等. 鋁合金板材模壓淬火復合成型方法及其一體化裝置: 中國專利, CN201710291517.4. 2017-10-27
    [15] Liu Y T, Mol J M C, Janssen G C A M. Combined corrosion and wear of aluminium alloy 7075–T6. J Bio Tribo-Corros, 2016, 2: 9 doi: 10.1007/s40735-016-0042-3
    [16] Pujante J, Pelcastre L, Vilaseca M, et al. Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures. Wear, 2013, 308(1-2): 193 doi: 10.1016/j.wear.2013.06.015
    [17] Ghiotti A, Simonetto E, Bruschi S. Influence of process parameters on tribological behaviour of AA7075 in hot stamping. Wear, 2019, 426-427: 348 doi: 10.1016/j.wear.2018.11.031
    [18] Kumar S, Sood P K. A comparative study of dry sliding wear characterization of nano SiC and nano B4C filled Al7075 nanocomposites under high temperature environment. Mater Res Express, 2019, 6(5): 056506 doi: 10.1088/2053-1591/aae045
    [19] Haq M I U, Anand A. Dry sliding friction and wear behavior of AA7075–Si3N4 composite. Silicon, 2018, 10(5): 1819 doi: 10.1007/s12633-017-9675-1
    [20] Haq M I U, Anand A. Friction and wear behavior of AA7075–Si3N4 composites under dry conditions: effect of sliding speed. Silicon, 2019, 11(2): 1047 doi: 10.1007/s12633-018-9967-0
    [21] Jiang F C, Gao K X, Wang W R. Development of a digital high-temperature friction and wear tester for simulating hot-stamping process. Shanghai Met, 2019, 41(2): 99 doi: 10.3969/j.issn.1001-7208.2019.02.018

    江福椿, 高凱翔, 王武榮. 用于模擬熱沖壓成形過程的數顯式高溫摩擦磨損試驗機的研制. 上海金屬, 2019, 41(2):99 doi: 10.3969/j.issn.1001-7208.2019.02.018
    [22] El-Morsy A W. Dry sliding wear behavior of hot deformed magnesium AZ61 alloy as influenced by the sliding conditions. Mater Sci Eng A, 2008, 473(1-2): 330 doi: 10.1016/j.msea.2007.03.096
    [23] Avcu E. The influences of ECAP on the dry sliding wear behaviour of AA7075 aluminium alloy. Tribol Int, 2017, 110: 173
    [24] Vaziri H S, Shokuhfar A, Afghahi S S S. Investigation of mechanical and tribological properties of aluminum reinforced with tungsten disulfide (WS2) nanoparticles. Mater Res Express, 2019, 6(4): 045018 doi: 10.1088/2053-1591/aafa00
    [25] Dwivedi D K. Adhesive wear behaviour of cast aluminium-silicon alloys: overview. Mater Des, 2010, 31(5): 2517 doi: 10.1016/j.matdes.2009.11.038
  • 加載中
圖(8) / 表(5)
計量
  • 文章訪問數:  2144
  • HTML全文瀏覽量:  998
  • PDF下載量:  84
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-11
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回