-
摘要: 采用自制的板帶高溫摩擦試驗機模擬實際固溶–沖壓–淬火一體化熱成形工藝下7075鋁合金的高溫摩擦過程,分別對上下摩擦頭進行冷卻和加熱以模擬實際熱沖壓過程對模具和壓邊圈的冷卻和加熱,分析了下模加熱溫度、法向載荷和滑動速度對7075鋁合金摩擦行為及磨損機理的影響。結果表明:鋁合金摩擦系數隨著下模加熱溫度的升高而增大,磨損機制由300 ℃時的黏著磨損轉變為500 ℃時的黏著磨損、氧化磨損和磨粒磨損;施加法向載荷越大,摩擦系數越大,不同載荷下磨損機制均為黏著磨損及輕微的磨粒磨損,且隨著載荷增大,黏著磨損程度有所加深;高滑動速度導致了磨損表面局部氧化物的生成,使摩擦系數隨著滑動速度增大而減小,滑動速度為30 mm·s?1時,磨損機制主要是氧化磨損、磨粒磨損和黏著磨損。Abstract: Aluminum alloys are lightweight materials widely used in the automobile industry because of their high specific strength. As the aluminum alloy with the highest strength at room temperature, 7075 aluminum alloy has great potential for usage in the manufacturing of structural parts. However, its formability at room temperature is poor and its springback is large. Although both good formability and high strength in aluminum alloys can be realized by hot forming, 7075 aluminum alloy has high susceptibility to adhesive wear, which means its tribological properties are poor during hot forming. Exploration of the influence of process parameters on the friction behavior and wear mechanism of 7075 aluminum alloy has great significance for the numerical simulation of the hot-stamping process and lubrication engineering. The high-temperature friction process of 7075 aluminum alloy during the actual hot forming–quenching integrated process was simulated by a self-made high-temperature strip friction tester. The upper and lower friction components were cooled and heated, respectively, to simulate the cooling and heating of the die (blank holder) in the actual hot-stamping process. The effects of the preheating temperature of the lower die, normal load, and sliding speed on the friction behavior and wear mechanism of 7075 aluminum alloy were analyzed. The results show that the friction coefficient of aluminum alloy increases with increase in the preheating temperature, and the wear mechanism changes from adhesive wear at 300 °C to adhesive, abrasive, and oxidative wear at 500 °C. The larger the normal load applied, the larger is the friction coefficient. The wear mechanism under different loads was determined to be adhesive wear with slight abrasive wear, with the degree of adhesive wear increasing with the increase in load. A high sliding speed leads to the formation of local oxides on the surface, which makes the friction coefficient decrease with an increase in the sliding speed. The main wear mechanisms are oxidative, abrasive, and adhesive wear when the sliding speed is 30 mm·s?1.
-
Key words:
- hot stamping /
- 7075 aluminum alloy /
- high-temperature friction /
- friction coefficient /
- wear mechanism
-
圖 8 不同滑動速度下7075鋁合金的磨損表面形貌及EDS分析。(a)滑動速度為10 mm·s?1時的試樣磨損形貌;(b)滑動速度為20 mm·s?1時的試樣磨損形貌;(c)滑動速度為20 mm·s?1時的EDS分析;(d)滑動速度為30 mm·s?1時的試樣磨損形貌;(e)滑動速度為30 mm·s?1時的EDS分析
Figure 8. SEM micrographs of the worn surfaces and EDS analyses of 7075 aluminum alloy at different sliding speeds: (a) wear morphology of specimen when sliding speed is 10 mm·s?1; (b) wear morphology of specimen when sliding speed is 20 mm·s?1; (c) EDS analysis when sliding speed is 20 mm·s?1; (d) wear morphology of specimen when sliding speed is 30 mm·s?1; (e) EDS analysis when sliding speed is 30 mm·s?1
表 1 7075鋁合金的化學成分(質量分數)
Table 1. Chemical composition of 7075 aluminum alloy
% Element Zn Mg Cu Cr Fe Mass fraction 6.10 2.54 1.20 0.20 0.20 表 2 H13鋼的化學成分(質量分數)
Table 2. Chemical composition of H13 steel
% Element C Si Mn Cr P S Mo B V Mass fraction 0.391 0.911 0.374 5.180 0.015 0.015 1.450 0.003 0.953 表 3 高溫摩擦試驗參數
Table 3. Experimental parameters of the high-temperature friction test
Test group Temperature of lower
die /℃Normal load /
NSliding speed /
(mm·s?1)1 300, 400, 500 540 10 2 400 540, 680, 820 10 3 400 540 10, 20, 30 Test point O Mg Al Fe Cu 1 21.27 3.50 24.49 4.88 45.86 2 22.60 4.90 33.40 5.28 33.83 表 5 不同載荷下試樣磨損表面元素的EDS分析(質量分數)
Table 5. EDS analysis of worn surface elements under different normal loads
% Test point Mg Al Fe Cu Zn A 1.42 93.56 0.93 1.60 2.49 B 4.69 88.67 1.52 1.51 3.61 C 2.47 88.40 2.58 1.60 4.95 259luxu-164 -
參考文獻
[1] Chegini M, Fallahi A, Shaeri M H. Effect of equal channel angular pressing (ECAP) on wear behavior of Al–7075 alloy. Procedia Mater Sci, 2015, 11: 95 doi: 10.1016/j.mspro.2015.11.116 [2] Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Insights into the behaviour of tool steel-aluminium alloy tribopair at different temperatures. Tribol Int, 2018, 119: 567 doi: 10.1016/j.triboint.2017.11.041 [3] Hou L G, Zhao F, Zhuang L Z, et al. Retrogression and re-aging 7B50 Al alloy plates based on examining the through-thickness microstructures and mechanical properties. Chin J Eng, 2017, 39(3): 432侯隴剛, 趙鳳, 莊林忠, 等. 基于厚向組織性能考量的7B50鋁合金中厚板回歸再時效熱處理. 工程科學學報, 2017, 39(3):432 [4] Ma Y W, Wang B Y, Xiao W C, et al. Effect of solution and aging processes on the mechanical properties of 6016 aluminum alloy and multi-objective optimization. Chin J Eng, 2017, 39(1): 75馬嚴瑋, 王寶雨, 校文超, 等. 固溶時效工藝對6016鋁合金力學性能的影響及多目標優化. 工程科學學報, 2017, 39(1):75 [5] Laurino A, Andrieu E, Harouard J P, et al. Effect of corrosion on the fatigue life and fracture mechanisms of 6101 aluminum alloy wires for car manufacturing applications. Mater Des, 2014, 53: 236 doi: 10.1016/j.matdes.2013.06.079 [6] Liu Q, Chen S C, Gu R Y, et al. Effect of heat treatment conditions on mechanical properties and precipitates in sheet metal hot stamping of 7075 aluminum alloy. J Mater Eng Perform, 2018, 27(9): 4423 doi: 10.1007/s11665-018-3588-z [7] Shamsipur A, Asadkarami S. Microstructure and mechanical properties of copper surface composite layers reinforced by nano and microscale SiC particles via friction stir processing. Adv Compos Mater, 2019, 28(6): 591 doi: 10.1080/09243046.2019.1623453 [8] Andreatta F, Terryn H, de Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy. Electrochim Acta, 2004, 49(17-18): 2851 doi: 10.1016/j.electacta.2004.01.046 [9] Yang X M, Wang B Y, Xiao W C, et al. Prediction of forming limit curve of 6016 aluminum alloy based on M–K theory. Chin J Eng, 2018, 40(4): 485楊曉明, 王寶雨, 校文超, 等. 基于M–K理論的6016鋁合金成形極限曲線預測. 工程科學學報, 2018, 40(4):485 [10] Yang X Y, Lang L H, Liu K N, et al. Prediction of forming limit diagram of AA7075–O aluminum alloy sheet based on modified M–K model. J Beijing Univ Aeron Astron, 2015, 41(4): 675楊希英, 郎利輝, 劉康寧, 等. 基于修正M–K模型的鋁合金板材成形極限圖預測. 北京航空航天大學學報, 2015, 41(4):675 [11] Du P H, Lang L H, Liu B S, et al. Theoretical prediction and parameter influence of FLDs based on M–K model. J Plast Eng, 2011, 18(5): 84 doi: 10.3969/j.issn.1007-2012.2011.05.017杜平海, 郎利輝, 劉寶勝, 等. 基于M–K模型的成形極限預測及參數影響. 塑性工程學報, 2011, 18(5):84 doi: 10.3969/j.issn.1007-2012.2011.05.017 [12] Ma G S, Wan M, Wu X D. Theoretical prediction of FLDs for Al-Li alloy at elevated temperature based on M–K model. Chin J Nonferrous Met, 2008, 18(6): 980 doi: 10.3321/j.issn:1004-0609.2008.06.005馬高山, 萬敏, 吳向東. 基于M–K模型的鋁鋰合金熱態下成形極限預測. 中國有色金屬學報, 2008, 18(6):980 doi: 10.3321/j.issn:1004-0609.2008.06.005 [13] He Z B, Fan X B, Yuan S J. Review of hot forming-quenching integrated process of aluminum alloy. J Netshape Form Eng, 2014, 6(5): 37 doi: 10.3969/j.issn.1674-6457.2014.05.007何祝斌, 凡曉波, 苑世劍. 鋁合金板材熱成形-淬火一體化工藝研究進展. 精密成形工程, 2014, 6(5):37 doi: 10.3969/j.issn.1674-6457.2014.05.007 [14] Chen S C, Lai S Y, Gu R Y, et al. Aluminum Alloy Sheet Molding and Quenching Compound Forming Method and Integrated Device: China Patent, CN201710291517.4. 2017-10-27陳世超, 賴思旸, 顧瑞瑩, 等. 鋁合金板材模壓淬火復合成型方法及其一體化裝置: 中國專利, CN201710291517.4. 2017-10-27 [15] Liu Y T, Mol J M C, Janssen G C A M. Combined corrosion and wear of aluminium alloy 7075–T6. J Bio Tribo-Corros, 2016, 2: 9 doi: 10.1007/s40735-016-0042-3 [16] Pujante J, Pelcastre L, Vilaseca M, et al. Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures. Wear, 2013, 308(1-2): 193 doi: 10.1016/j.wear.2013.06.015 [17] Ghiotti A, Simonetto E, Bruschi S. Influence of process parameters on tribological behaviour of AA7075 in hot stamping. Wear, 2019, 426-427: 348 doi: 10.1016/j.wear.2018.11.031 [18] Kumar S, Sood P K. A comparative study of dry sliding wear characterization of nano SiC and nano B4C filled Al7075 nanocomposites under high temperature environment. Mater Res Express, 2019, 6(5): 056506 doi: 10.1088/2053-1591/aae045 [19] Haq M I U, Anand A. Dry sliding friction and wear behavior of AA7075–Si3N4 composite. Silicon, 2018, 10(5): 1819 doi: 10.1007/s12633-017-9675-1 [20] Haq M I U, Anand A. Friction and wear behavior of AA7075–Si3N4 composites under dry conditions: effect of sliding speed. Silicon, 2019, 11(2): 1047 doi: 10.1007/s12633-018-9967-0 [21] Jiang F C, Gao K X, Wang W R. Development of a digital high-temperature friction and wear tester for simulating hot-stamping process. Shanghai Met, 2019, 41(2): 99 doi: 10.3969/j.issn.1001-7208.2019.02.018江福椿, 高凱翔, 王武榮. 用于模擬熱沖壓成形過程的數顯式高溫摩擦磨損試驗機的研制. 上海金屬, 2019, 41(2):99 doi: 10.3969/j.issn.1001-7208.2019.02.018 [22] El-Morsy A W. Dry sliding wear behavior of hot deformed magnesium AZ61 alloy as influenced by the sliding conditions. Mater Sci Eng A, 2008, 473(1-2): 330 doi: 10.1016/j.msea.2007.03.096 [23] Avcu E. The influences of ECAP on the dry sliding wear behaviour of AA7075 aluminium alloy. Tribol Int, 2017, 110: 173 [24] Vaziri H S, Shokuhfar A, Afghahi S S S. Investigation of mechanical and tribological properties of aluminum reinforced with tungsten disulfide (WS2) nanoparticles. Mater Res Express, 2019, 6(4): 045018 doi: 10.1088/2053-1591/aafa00 [25] Dwivedi D K. Adhesive wear behaviour of cast aluminium-silicon alloys: overview. Mater Des, 2010, 31(5): 2517 doi: 10.1016/j.matdes.2009.11.038 -