Effect of induction heating temperature on the interface of cold?hot-rolled titanium/steel composite plates
-
摘要: 對鈦/鋼組坯進行冷軋預復合成形,將鈦/鋼預復合板感應加熱至熱軋溫度后單道次熱軋成形制備了鈦/鋼復合板,研究了感應加熱溫度對鈦/鋼復合板的界面組織和界面結合性能的影響。結果表明,冷?熱軋制復合法制備的鈦/鋼復合板的界面結合緊密,沒有孔洞和間隙。鈦/鋼復合板由于感應加熱和熱軋的時間較短(<5 s),鈦/鋼界面僅有少量硬化層碎塊,沒有金屬間化合物析出。鈦/鋼復合板的界面Ti和Fe元素擴散層寬度隨感應加熱溫度增大而增大,950 ℃時界面擴散層寬度達到8 μm。在感應加熱溫度為750 ~ 950 ℃的條件下,鈦/鋼復合板的界面結合良好。Abstract: Titanium/steel composite plates are widely used in petrochemical equipment, seawater desalination equipment, nuclear power equipment, ocean engineering, and other fields owing to the excellent corrosion resistance of titanium and low steel cost. Various methods have been adopted for manufacturing titanium/steel composite plates, which include explosive bonding, explosive-rolling bonding, diffusion bonding, and hot rolling bonding. Among these techniques, hot rolling bonding method enables the production of large-sized titanium/steel composite plates with high efficiency, low pollution, and low energy consumption. However, electron beam welding of billets is required to prevent interface oxidation and the formation of brittle compounds such as TiC, FeTi, and Fe2Ti on the interface, which may cause the degradation of mechanical properties of titanium/steel composite plates. In this study, the precomposite formation of billets was done through cold rolling and the titanium/steel composite plates were prepared via single pass hot rolling after induction heating to the hot rolling temperature. The effect of induction heating temperature on the interfacial structure and bonding properties of titanium/steel composite plates was studied. The results show that the interface of titanium/steel composite plates prepared by the cold–hot rolling composite method is tightly bonded without holes and gaps. The short induction heating and hot rolling time (<5 s) are insufficient for the formation of intermetallic compounds on the carbon steel side of the composite plates, yielding only a small number of blocky hardened layers at the titanium/steel interface. Higher induction heating temperature results in wider Ti and Fe element diffusion layer at the interface, with the maximum width of 8 μm obtained at 950 ℃. The titanium/steel composite plates in this study achieved good metallurgical bonding with induction heating temperatures of 750 ℃ to 950 ℃.
-
表 1 原材料的化學成分(質量分數)
Table 1. Chemical composition of experimental TA2 and Q235
% TA2 Q235 Fe C N H O Others Ti C Si Mn S P Fe <0.30 <0.08 <0.03 <0.015 <0.25 <0.4 Bal. 0.12–0.20 0.19–0.30 0.30–0.70 ≤0.45 ≤0.045 Bal. Point Ti Fe C 1 83.57 1.73 14.7 2 4.13 95.87 ― 3 81.97 0.65 17.38 4 0.83 61.17 38.01 5 92.04 1.51 6.54 6 0.49 88.83 10.68 259luxu-164 -
參考文獻
[1] Yan L. Behaviotsard applications of Ti/steel composite sheets. China Tit Ind, 2011(3): 12閆力. 鈦鋼復合板的特點及應用領域. 中國鈦業, 2011(3):12 [2] Hu J, Xie R, Du X B. Processing technology of titanium steel clad plate and its application in ship and ocean engineering. Jiangsu Ship, 2016, 33(6): 6 doi: 10.3969/j.issn.1001-5388.2016.06.002胡杰, 謝榮, 杜訓柏. 鈦鋼復合板加工技術及其在船海工程中的應用. 江蘇船舶, 2016, 33(6):6 doi: 10.3969/j.issn.1001-5388.2016.06.002 [3] Prasanthi T N, Ravikirana C S, Saroja S. Explosive cladding and post-weld heat treatment of mild steel and titanium. Mater Des, 2016, 93: 180 doi: 10.1016/j.matdes.2015.12.120 [4] Liu J X, Zhao A M, Jiang H T, et al. Microstructure features of the steel side in TA2-Q235B explosive clad plates. J Univ Sci Technol Beijing, 2012, 34(6): 671劉繼雄, 趙愛民, 江海濤, 等. TA2-Q235B爆炸復合板鋼側組織特征. 北京科技大學學報, 2012, 34(6):671 [5] Xie M X, Zhang L J, Zhang G F, et al. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling. Mater Des, 2015, 87: 181 doi: 10.1016/j.matdes.2015.08.021 [6] Jiang H T, Yan X Q, Liu J X, et al. Effect of heat treatment on microstructure and mechanical property of Ti-steel explosive-rolling clad plate. Trans Nonferrous Met Soc China, 2014, 24(3): 697 doi: 10.1016/S1003-6326(14)63113-7 [7] Kundu S, Sam S, Mishra B, et al. Diffusion bonding of microduplex stainless steel and Ti alloy with and without interlayer: interface microstructure and strength properties. Metall Mater Trans A, 2014, 45(1): 371 doi: 10.1007/s11661-013-1977-3 [8] Song T F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti–6Al–4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer. Vacuum, 2017, 145: 68 doi: 10.1016/j.vacuum.2017.08.017 [9] Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer. Mater Sci Eng A, 2017, 695: 120 doi: 10.1016/j.msea.2017.03.118 [10] Ma Z X, Hu J, Li D F, et al. Overview of research and manufacture of layer-metal composite plate. Chin J Rare Met, 2003, 27(6): 799 doi: 10.3969/j.issn.0258-7076.2003.06.030馬志新, 胡捷, 李德富, 等. 層狀金屬復合板的研究和生產現狀. 稀有金屬, 2003, 27(6):799 doi: 10.3969/j.issn.0258-7076.2003.06.030 [11] Chai X Y, Pan T, Chai F, et al. Interlayer engineering for titanium clad steel by hot roll bonding. J Iron Steel Res Int, 2018, 25(7): 739 doi: 10.1007/s42243-018-0106-3 [12] Liu J G, Cai W C, Liu L, et al. Investigation of interfacial structure and mechanical properties of titanium clad steel sheets prepared by a brazing-rolling process. Mater Sci Eng A, 2017, 703: 386 doi: 10.1016/j.msea.2017.06.095 [13] Wang J Z, Yan X B, Wang W Q, et al. Summarization of the rolling Ti-steel composite plates process. Mater Rev, 2005, 19(4): 61 doi: 10.3321/j.issn:1005-023X.2005.04.017王敬忠, 顏學柏, 王韋琪, 等. 軋制鈦?鋼復合板工藝綜述. 材料導報, 2005, 19(4):61 doi: 10.3321/j.issn:1005-023X.2005.04.017 [14] Luo Z A, Wang G L, Xie G M, et al. Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer. Acta Metall Sin (Engl Lett) , 2013, 26(6): 754 doi: 10.1007/s40195-013-0283-9 [15] Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate. J Mater Eng Perform, 2018, 27(4): 1664 doi: 10.1007/s11665-018-3279-9 [16] Lee M K, Lee J G, Choi Y H, et al. Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater Lett, 2010, 64(9): 1105 doi: 10.1016/j.matlet.2010.02.024 [17] Ke S R, Xu X H, Xiang Z D. Feasibility of cladding Ti to carbon steel by diffusion bonding followed by hot-rolling // Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering. Shenzhen, 2015: 1961 [18] Jiang H T, Yan X Q, Liu J X, et al. Diffusion behavior and mathematical model of Ti-steel explosive clad plate during heat treatment. Rare Met Mater Eng, 2015, 44(4): 972江海濤, 閻曉倩, 劉繼雄, 等. 鈦?鋼爆炸復合板熱處理過程中的擴散行為及數學模型. 稀有金屬材料與工程, 2015, 44(4):972 [19] Chai X Y, Shi Z R, Chai F, et al. Effect of heating temperature on microstructure and mechanical properties of titanium clad steel by hot roll bonding. Rare Met Mater Eng, 2019, 48(8): 2701柴希陽, 師仲然, 柴峰, 等. 加熱溫度對軋制鈦/鋼復合板組織與性能的影響. 稀有金屬材料與工程, 2019, 48(8):2701 [20] Yang D H, Luo Z A, Xie G M, et al. Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates. J Iron Steel Res Int, 2018, 25(1): 72 doi: 10.1007/s42243-017-0009-8 [21] Yu W, Zhang L, Chen Y L, et al. Effect of rolling temperature on the properties of TA1/Q345 composite plates. J Univ Sci Technol Beijing, 2013, 35(1): 97余偉, 張蕾, 陳銀莉, 等. 軋制溫度對TA1/Q345復合板性能的影響. 北京科技大學學報, 2013, 35(1):97 [22] Xu W, Zhu M, Guo S L, et al. Interfaces of titanium-aluminum clad sheet and affecting to processing performance. Chin J Rare Met, 2011, 35(3): 342 doi: 10.3969/j.issn.0258-7076.2011.03.005徐衛, 朱明, 郭勝利, 等. 鈦?鋁復合板界面組織及其對加工性能的影響. 稀有金屬, 2011, 35(3):342 doi: 10.3969/j.issn.0258-7076.2011.03.005 [23] Kundu S, Chatterjee S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel. Mater Sci Eng A, 2008, 480(1-2): 316 doi: 10.1016/j.msea.2007.07.033 [24] Jiang H T, Wu B, Zhang Y, et al. Interfacial microstructure and deformation mechanism of Ti-steel clad plate under high strain rate. Chin J Eng, 2017, 39(7): 1070江海濤, 吳波, 張韻, 等. 高應變速率下鈦?鋼復合板界面組織特征及變形機制. 工程科學學報, 2017, 39(7):1070 [25] Deng Y Q, Sheng G M, Xu C. Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Mater Des, 2013, 46: 84 doi: 10.1016/j.matdes.2012.09.058 -