Flight operation risk prediction model based on the multivariate chaotic time series
-
摘要: 為了提升航班運行風險預測精度,基于某航空公司2016—2018年航班運行風險數據,在驗證15個風險時間序列的混沌特性后,構建基于多變量混沌時間序列的風險預測模型。首先,對15個風險時間序列進行多變量相空間重構,采用主成分分析法(PCA)對相空間進行降維處理;然后,基于迭代預測的方式,分別采用極限學習機、RBF神經網絡、回聲狀態網絡和Elman神經網絡建立風險短期預測模型;最后,以降維后的相空間作為輸入,計算并比較分析未來1~7 d的風險預測結果。結果表明:多變量相空間重構后總維數為62維,經PCA降維處理,降至31維;在不同的預測模型中,降維后RBF模型預測效果最佳;其中,預測第1天結果相對誤差<25%出現頻數為82.62%,至第5天仍達75%以上;該模型第1天預測結果的修正平均絕對百分比誤差(MAPE)值為11.32%,且前5 d均低于20%,滿足航空公司使用要求。1~5 d預測結果對航班風險管控具有實踐操作價值,證明基于多變量混沌時間序列的風險預測方案可行、有效。Abstract: With the development of civil aviation safety management, the flight operation risk of airlines is of increasing concern. Risk prediction technology extracts information from historical and current risk data and uses it to predict short-term trends in the future, thus helping identify emerging risks and providing more time for risk management. Compared with non-dynamic risk assessment, this technology is more substantial for the management and control of flight operation risk. To improve the accuracy of flight operation risk prediction, on the basis of the flight risk data of a certain airline in 2016—2018, the chaotic characteristics of 15 risk time series were verified and a short-term risk prediction model based on the multivariate chaotic time series was constructed. First, multivariate phase space reconstruction was performed on 15 risk time series, and the phase space was reduced by the principal component analysis (PCA) method. Then, four short-term risk prediction models, namely, extreme learning machine, radial basis function (RBF) neural network, echo state network, and Elman neural network, were built on the basis of iterative prediction. Finally, the phase space after dimension reduction was used as the model input, and the risk prediction results for 1–7 d were calculated and compared. Results show that the total number of dimensions after multivariable phase space reconstruction is 62, which is reduced to 31 by PCA dimension reduction. Of the four prediction models, the RBF neural network model after dimension reduction has the best prediction effect. The occurrence frequency of <25% relative error is 82.62% for the first day and 75% for the fifth day. The corrected mean absolute percentage error for the first day is 11.32%, and lower than 20% for the next 4 d. Thus, the calculation results meet the requirements of the airline. The prediction results within 1–5 d have practical value for flight risk management, proving that the risk prediction method based on the multivariate chaotic time series is feasible and effective.
-
表 1 ICAO風險矩陣與中國民航局(CAAC)風險值
Table 1. ICAO risk matrix and CAAC risk value
Likelihood Severity Catastrophic,
AHazardous,
BMajor,
CMinor,
DNegligible,
EFrequent, 5 5A / 10 5B / 10 5C / 10 5D / 7 5E / 6 Occasional, 4 4A / 10 4B / 8 4C / 8 4D / 6 4E / 5 Remote, 3 3A / 9 3B / 8 3C / 7 3D / 5 3E / 2 Improbable, 2 2A / 8 2B / 7 2C / 6 2D / 4 2E / 1 Extremely improbable, 1 1A / 7 1B / 4 1C / 3 1D / 1 1E / 1 表 2 航班運行風險統計數據
Table 2. Risk assessment statistical data
Risk item Statistical meaning A1 Statistics of captain (non-instructor) and second co-pilot match times A2 Statistics of crew duty time or flight time less than 1 h times A3 Statistics of quick access recorder (QAR) blue and yellow warnings times after flight A4 Statistics times of captain’s experience less than 200 h and the total flight experience less than 3000 h A5 Statistics of the crew first match times to special airport in 12 calendar months A6 Statistics of temporary airborne failures times A7 Number of minimum equipment list (MEL)/configuration discrepancy list (CDL) reservations or MEL reservations affecting near landings A8 Statistics times of flights with special cargo or dangerous goods A9 Statistics of ground handling error times A10 Statistics of low fuel, yaw, abnormal altitude, etc. in flight monitoring A11 Statistics of times the airport failed to meet or on the edge of the weather criteria A12 Statistics of navigation equipment degradations, operating standards and obstacles temporary changes A13 Statistics of special weather (icing, thunderstorms, etc.,) which need to divert A14 Statistics of special operations (polar operations, re-dispatch flights, extended-range operations (ETOPS),
extended cross-water, overflying unmanned areas)A15 Statistics of route closure, flow control, height limit, etc. Total risk Comprehensive assessment from the above risk items 表 3 航班運行風險時間序列局部數據樣本
Table 3. Time series sample data of flight operation risk
Sequence number/d A1 A2 A3 A4 A5 …… A13 A14 A15 Total risk 1 7 7 9 7 10 …… 8 10 8 8.5 2 6 7 9 6 9 …… 6 9 6 8 3 4 4 6 4 7 …… 3 6 3 5 4 4 4 6 1 4 …… 2 5 2 3 …… …… …… …… …… …… …… …… …… …… …… 1096 6 6 8 3 6 5 6 3 5 5 表 4 時間序列的時間延遲、嵌入維和最大Lyapunov指數
Table 4. Time delay, embedding dimension, and maximum Lyapunov exponent of the time series
Risk item Time delay, $\tau $ Embedding dimension, $m$ Maximum Lyapunov
exponent, $\lambda $Risk item Time delay, $\tau $ Embedding dimension, $m$ Maximum Lyapunov
exponent, $\lambda $A1 3 4 0.5440 A9 2 9 0.2039 A2 4 2 0.9583 A10 3 3 0.9572 A3 3 4 0.5973 A11 2 8 0.2010 A4 6 3 0.9419 A12 2 4 0.2723 A5 4 2 0.8864 A13 3 4 0.7508 A6 4 3 0.9689 A14 3 4 0.6747 A7 4 2 1.1224 A15 2 4 0.3707 A8 3 6 0.2631 Total risk 4 5 0.3289 表 5 主成分分析的方差貢獻率
Table 5. Partial variance contribution rate of PCA
Principal component Variance contribution/% Accumulative contribution rate/% Principal component Variance contribution/% Accumulative contribution rate/% 1 15.5907 15.5907 30 0.8018 89.8892 2 11.5223 27.1131 31 0.7893 90.6785 3 7.5821 34.6952 32 0.7054 91.3839 4 6.3632 41.0583 … … … … … … 62 0.0092 100.0000 表 6 預測模型的參數優化結果
Table 6. Parameter optimization results of the prediction models
Parameter Value Parameter Value Hidden layer sizes of ELM 75 Leaking rate of ESN 0.80 Spread of RBF 1 Layer delays of Elman 4 Reservoir sizes of ESN 18 Hidden layer sizes of Elman 152 表 7 各模型降維前后預測相對誤差頻數
Table 7. RE frequency of each prediction model before and after dimension reduction
Model Prediction range RE frequency of prediction model before dimension reduction RE frequency of prediction model after dimension reduction <25% 25%?50% >50% <25% 25%?50% >50% ELM Day 1 131 / 68.95% 41 / 21.58% 18 / 9.47% 127 / 66.84% 43 / 22.63% 20 / 10.53% Day 3 107 / 56.32% 55 / 28.95% 28 / 14.74% 109 / 57.37% 46 / 24.21% 35 / 18.42% Day 5 115 / 60.53% 45 / 23.68% 30 / 15.79% 113 / 59.47% 46 / 24.21% 31 / 16.32% RBF Day 1 157 / 82.63% 22 / 11.58% 11 / 5.79% 151 / 79.47% 27 / 14.21% 12 / 6.32% Day 3 150 / 78.95% 20 / 10.53% 20 / 10.53% 138 / 72.63% 32 / 16.84% 20 / 10.53% Day 5 143 / 75.26% 19 / 10.00% 21 / 11.05% 129 / 67.89% 28 / 14.74% 24 / 12.63% ESN Day 1 111 / 58.42% 53 / 27.89% 26 / 13.68% 108 / 56.84% 56 / 29.47% 26 / 13.68% Day 3 102 / 53.68% 58 / 30.53% 30 / 15.79% 99 / 52.11% 61 / 32.11% 30 / 15.79% Day 5 106 / 55.79% 52 / 27.37% 32 / 16.84% 105 / 55.26% 46 / 24.21% 39 / 20.53% Elman Day 1 142 / 74.74% 32 / 16.84% 16 / 8.42% 142 / 74.74% 35 / 18.42% 13 / 6.84% Day 3 116 / 61.05% 47 / 24.74% 27 / 14.21% 129 / 67.89% 31 / 16.32% 30 / 15.79% Day 5 109 / 57.37% 54 / 28.42% 27 / 14.21% 111 / 58.42% 47 / 24.74% 32 / 16.84% 259luxu-164 -
參考文獻
[1] Feng Z L. Promote the high-quality development of civil aviation with the new development concept. People's Forum, 2019(5): 6 doi: 10.3969/j.issn.1004-3381.2019.05.001馮正霖. 以新發展理念引領新時代民航高質量發展. 人民論壇, 2019(5):6 doi: 10.3969/j.issn.1004-3381.2019.05.001 [2] Bowen B D, Headley D E, Luedtke J R. A quantitative methodology for measuring airline quality. J Aviation/Aerospace Educ Res, 1992, 2(2): 27 [3] Lower M, Magott J, Skorupski J. Analysis of air traffic incidents using event trees with fuzzy probabilities. Fuzzy Sets Syst, 2016, 293(C): 50 [4] Kokangül A, Polat U, Dagsuyu C. A new approximation for risk assessment using the AHP and Fine Kinney methodologies. Saf Sci, 2017, 91: 24 doi: 10.1016/j.ssci.2016.07.015 [5] FAA. Flight risk assessment tool[EB/OL]. Federal Aviation Administration Online (2007-08-02)[2018-08-31]. https://www.faa.gov/news/safety_briefing/2016/media/SE_Topic_16-12.pdf [6] NATA. NATA’s risk assessment tool?RA Check[EB/OL]. National Air Transportation Association Online (2012-01-23)[2018-08-31]. https://www.acukwikalert.com/on-the-radar/2010/3/9/natas-ra-check-automated-risk-assessment-tool-launched-at-sa.html [7] Sun R S, Liu H H. Assessment theory and practice for airline safety. China Saf Sci J, 1999, 9(3): 69 doi: 10.3969/j.issn.1003-3033.1999.03.014孫瑞山, 劉漢輝. 航空公司安全評估理論與實踐. 中國安全科學學報, 1999, 9(3):69 doi: 10.3969/j.issn.1003-3033.1999.03.014 [8] Wang Y T, Li R, Lu F, et al. Risk assessment system of flight operation based on multiple factor analysis. J Tianjin Polytech Univ, 2014, 33(3): 84 doi: 10.3969/j.issn.1671-024X.2014.03.017王巖韜, 李蕊, 盧飛, 等. 基于多因素分析的航班運行風險評估體系. 天津工業大學學報, 2014, 33(3):84 doi: 10.3969/j.issn.1671-024X.2014.03.017 [9] Wang Y T, Zhao Y F. Research on flight operations risk identification based on multi-algorithm collaboration. China Saf Sci J, 2018, 28(6): 166王巖韜, 趙嶷飛. 基于多算法協作的航班運行風險辨識研究. 中國安全科學學報, 2018, 28(6):166 [10] PROSPEROFP7. Aviation sector collaborates to make ultra-safe travel even safer[EB/OL]. PROSPERO Online (2015-11-12)[2018.10.26]. http://www.prosperofp7.eu/news/36-aviation-sector-collaborates-to-make-ultra-safe-travel-even-safer [11] Lalis A, Socha V, Kraus J, et al. Conditional and unconditional safety performance forecasts for aviation predictive risk management // 2018 IEEE Aerospace Conference. Big Sky, 2018 [12] Zhang X G, Mahadevans S. Ensemble machine learning models for aviation incident risk prediction. Decision Support Syst, 2019, 116: 48 doi: 10.1016/j.dss.2018.10.009 [13] Wang Y T, Liu H, Tang J X, et al. Dynamic prediction technology in the application of flight operation risk. Control Decision, 2019, 34(9): 1946王巖韜, 劉宏, 唐建勛, 等. 動態預測技術在航班運行風險中的應用. 控制與決策, 2019, 34(9):1946 [14] Li M, Xu J W, Yang J H, et al. Prediction for chaotic time series based on phase reconstruction of multivariate time series. J Univ Sci Technol Beijing, 2008, 30(2): 208 doi: 10.3321/j.issn:1001-053X.2008.02.021黎敏, 徐金梧, 陽建宏, 等. 基于多變量相重構的混沌時間序列預測. 北京科技大學學報, 2008, 30(2):208 doi: 10.3321/j.issn:1001-053X.2008.02.021 [15] Fang F. Volterra adaptive real-time prediction of multivariate chaotic time series. Syst Eng Electron, 2009, 31(10): 2476 doi: 10.3321/j.issn:1001-506X.2009.10.043方芬. 多變量混沌時間序列Volterra自適應實時預測. 系統工程與電子技術, 2009, 31(10):2476 doi: 10.3321/j.issn:1001-506X.2009.10.043 [16] Zhang C T, Ma Q L, Peng H, et al. Multivariate chaotic time series phase space reconstruction based on extending dimension by conditional entropy. Acta Phys Sin, 2011, 60(2): 118張春濤, 馬千里, 彭宏, 等. 基于條件熵擴維的多變量混沌時間序列相空間重構. 物理學報, 2011, 60(2):118 [17] Hou G Y, Liang R, Sun L, et al. Risk analysis on long inclined-shaft construction in coalmine by TBM techniques based on multiple variables chaotic time series. Acta Phys Sin, 2014, 63(9): 111侯公羽, 梁榮, 孫磊, 等. 基于多變量混沌時間序列的煤礦斜井TBM施工動態風險預測. 物理學報, 2014, 63(9):111 [18] Zhong Y H, Lin X X, Liu Y X. The oilfield output prediction model based on multivariate chaotic time series. Math Pract Theory, 2016, 46(6): 99鐘儀華, 林旭旭, 劉雨鑫. 基于多元混沌時間序列的油田產量預測模型. 數學的實踐與認識, 2016, 46(6):99 [19] Du L Q, Zeng C L, Yu Y W. Prediction of numerical control machine's motion precision based on multivariate chaotic time series. Trans Chin Soc Agric Mach, 2017, 48(3): 390 doi: 10.6041/j.issn.1000-1298.2017.03.050杜柳青, 曾翠蘭, 余永維. 基于多元混沌時間序列的數控機床運動精度預測. 農業機械學報, 2017, 48(3):390 doi: 10.6041/j.issn.1000-1298.2017.03.050 [20] Zhang S Q, Liu Z Y, He H Y, et al. Optimization and application of weighted one-rank local chaos prediction model based on multi-variable. Acta Metrol Sin, 2018, 39(1): 77 doi: 10.3969/j.issn.1000-1158.2018.01.17張淑清, 劉子玥, 何泓運, 等. 基于多變量加權一階局域混沌預測模型優化及應用. 計量學報, 2018, 39(1):77 doi: 10.3969/j.issn.1000-1158.2018.01.17 [21] Huang F M, Yin K L, Yang B B, et al. Step-like displacement prediction of landslide based on time series decomposition and multivariate chaotic model. Earth Sci, 2018, 43(3): 887黃發明, 殷坤龍, 楊背背, 等. 基于時間序列分解和多變量混沌模型的滑坡階躍式位移預測. 地球科學, 2018, 43(3):887 [22] Coleman M E, Marks H M. Qualitative and quantitative risk assessment. Food Control, 1999, 10(4-5): 289 doi: 10.1016/S0956-7135(99)00052-3 [23] Takens F. Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics. Heidelberg: Springer-verlag, 1981: 366 [24] He X Q. Multivariate Statistical Analysis. 4th Ed. Beijing: China Renmin University Press, 2015何曉群. 多元統計分析. 4版. 北京: 中國人民大學出版社, 2015 [25] Jiang X Y, Guo Y, Shi H Y, et al. Multivariable nonlinear RBF neural network predictive control based on TSA. Control Eng China, 2019, 26(9): 1655姜雪瑩, 郭穎, 施惠元, 等. 基于TSA多變量非線性RBF神經網絡預測控制. 控制工程, 2019, 26(9):1655 [26] Xu M L, Han M. Factor echo state network for multivariate chaotic time series prediction. Acta Autom Sin, 2015, 41(5): 1042許美玲, 韓敏. 多元混沌時間序列的因子回聲狀態網絡預測模型. 自動化學報, 2015, 41(5):1042 -