<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于多變量混沌時間序列的航班運行風險預測模型

王巖韜 李景良 谷潤平

王巖韜, 李景良, 谷潤平. 基于多變量混沌時間序列的航班運行風險預測模型[J]. 工程科學學報, 2020, 42(12): 1664-1673. doi: 10.13374/j.issn2095-9389.2019.12.09.002
引用本文: 王巖韜, 李景良, 谷潤平. 基于多變量混沌時間序列的航班運行風險預測模型[J]. 工程科學學報, 2020, 42(12): 1664-1673. doi: 10.13374/j.issn2095-9389.2019.12.09.002
WANG Yan-tao, LI Jing-liang, GU Run-ping. Flight operation risk prediction model based on the multivariate chaotic time series[J]. Chinese Journal of Engineering, 2020, 42(12): 1664-1673. doi: 10.13374/j.issn2095-9389.2019.12.09.002
Citation: WANG Yan-tao, LI Jing-liang, GU Run-ping. Flight operation risk prediction model based on the multivariate chaotic time series[J]. Chinese Journal of Engineering, 2020, 42(12): 1664-1673. doi: 10.13374/j.issn2095-9389.2019.12.09.002

基于多變量混沌時間序列的航班運行風險預測模型

doi: 10.13374/j.issn2095-9389.2019.12.09.002
基金項目: 國家自然科學基金資助項目(U1933103)
詳細信息
    通訊作者:

    E-mail:CAUCwyt@126.com

  • 中圖分類號: N945.24; X949; U8

Flight operation risk prediction model based on the multivariate chaotic time series

More Information
  • 摘要: 為了提升航班運行風險預測精度,基于某航空公司2016—2018年航班運行風險數據,在驗證15個風險時間序列的混沌特性后,構建基于多變量混沌時間序列的風險預測模型。首先,對15個風險時間序列進行多變量相空間重構,采用主成分分析法(PCA)對相空間進行降維處理;然后,基于迭代預測的方式,分別采用極限學習機、RBF神經網絡、回聲狀態網絡和Elman神經網絡建立風險短期預測模型;最后,以降維后的相空間作為輸入,計算并比較分析未來1~7 d的風險預測結果。結果表明:多變量相空間重構后總維數為62維,經PCA降維處理,降至31維;在不同的預測模型中,降維后RBF模型預測效果最佳;其中,預測第1天結果相對誤差<25%出現頻數為82.62%,至第5天仍達75%以上;該模型第1天預測結果的修正平均絕對百分比誤差(MAPE)值為11.32%,且前5 d均低于20%,滿足航空公司使用要求。1~5 d預測結果對航班風險管控具有實踐操作價值,證明基于多變量混沌時間序列的風險預測方案可行、有效。

     

  • 圖  1  航班運行總風險時間序列

    Figure  1.  Time series example of flight operation total risk

    圖  2  極限學習機結構

    Figure  2.  ELM structure

    圖  3  RBF神經網絡結構圖

    Figure  3.  RBF neural network structure

    圖  4  回聲狀態網絡結構圖

    Figure  4.  ESN structure

    圖  5  Elman神經網絡結構圖

    Figure  5.  Elman neural network structure

    圖  6  預測流程

    Figure  6.  Prediction process

    圖  7  從第900天向后預測樣例

    Figure  7.  Example of prediction results from the 900th day

    圖  8  預測結果示例。(a)第1天;(b)第3天;(c)第5天

    Figure  8.  Example of prediction results: (a) day 1; (b) day 3; (c) day 5

    圖  9  訓練樣本數量與預測精度

    Figure  9.  Number of training samples and prediction accuracy

    圖  10  RBF降維后的多變量預測精度

    Figure  10.  Prediction accuracy of the RBF model after dimension reduction

    表  1  ICAO風險矩陣與中國民航局(CAAC)風險值

    Table  1.   ICAO risk matrix and CAAC risk value

    LikelihoodSeverity
    Catastrophic,
    A
    Hazardous,
    B
    Major,
    C
    Minor,
    D
    Negligible,
    E
    Frequent, 55A / 105B / 105C / 105D / 75E / 6
    Occasional, 44A / 104B / 84C / 84D / 64E / 5
    Remote, 33A / 93B / 83C / 73D / 53E / 2
    Improbable, 22A / 82B / 72C / 62D / 42E / 1
    Extremely improbable, 11A / 71B / 41C / 31D / 11E / 1
    下載: 導出CSV

    表  2  航班運行風險統計數據

    Table  2.   Risk assessment statistical data

    Risk itemStatistical meaning
    A1Statistics of captain (non-instructor) and second co-pilot match times
    A2Statistics of crew duty time or flight time less than 1 h times
    A3Statistics of quick access recorder (QAR) blue and yellow warnings times after flight
    A4Statistics times of captain’s experience less than 200 h and the total flight experience less than 3000 h
    A5Statistics of the crew first match times to special airport in 12 calendar months
    A6Statistics of temporary airborne failures times
    A7Number of minimum equipment list (MEL)/configuration discrepancy list (CDL) reservations or MEL reservations affecting near landings
    A8Statistics times of flights with special cargo or dangerous goods
    A9Statistics of ground handling error times
    A10Statistics of low fuel, yaw, abnormal altitude, etc. in flight monitoring
    A11Statistics of times the airport failed to meet or on the edge of the weather criteria
    A12Statistics of navigation equipment degradations, operating standards and obstacles temporary changes
    A13Statistics of special weather (icing, thunderstorms, etc.,) which need to divert
    A14Statistics of special operations (polar operations, re-dispatch flights, extended-range operations (ETOPS),
    extended cross-water, overflying unmanned areas)
    A15Statistics of route closure, flow control, height limit, etc.
    Total riskComprehensive assessment from the above risk items
    下載: 導出CSV

    表  3  航班運行風險時間序列局部數據樣本

    Table  3.   Time series sample data of flight operation risk

    Sequence number/dA1A2A3A4A5……A13A14A15Total risk
    1779710……81088.5
    267969……6968
    344647……3635
    444614……2523
    …………………………………………………………
    10966683656355
    下載: 導出CSV

    表  4  時間序列的時間延遲、嵌入維和最大Lyapunov指數

    Table  4.   Time delay, embedding dimension, and maximum Lyapunov exponent of the time series

    Risk itemTime delay, $\tau $Embedding dimension, $m$Maximum Lyapunov
    exponent, $\lambda $
    Risk itemTime delay, $\tau $Embedding dimension, $m$Maximum Lyapunov
    exponent, $\lambda $
    A1340.5440A9290.2039
    A2420.9583A10330.9572
    A3340.5973A11280.2010
    A4630.9419A12240.2723
    A5420.8864A13340.7508
    A6430.9689A14340.6747
    A7421.1224A15240.3707
    A8360.2631Total risk450.3289
    下載: 導出CSV

    表  5  主成分分析的方差貢獻率

    Table  5.   Partial variance contribution rate of PCA

    Principal componentVariance contribution/%Accumulative contribution rate/%Principal componentVariance contribution/%Accumulative contribution rate/%
    115.590715.5907300.801889.8892
    211.522327.1131310.789390.6785
    37.582134.6952320.705491.3839
    46.363241.0583
    620.0092100.0000
    下載: 導出CSV

    表  6  預測模型的參數優化結果

    Table  6.   Parameter optimization results of the prediction models

    ParameterValueParameterValue
    Hidden layer sizes of ELM75Leaking rate of ESN0.80
    Spread of RBF1Layer delays of Elman4
    Reservoir sizes of ESN18Hidden layer sizes of Elman152
    下載: 導出CSV

    表  7  各模型降維前后預測相對誤差頻數

    Table  7.   RE frequency of each prediction model before and after dimension reduction

    ModelPrediction rangeRE frequency of prediction model before dimension reductionRE frequency of prediction model after dimension reduction
    <25%25%?50%>50%<25%25%?50%>50%
    ELMDay 1131 / 68.95%41 / 21.58%18 / 9.47%127 / 66.84%43 / 22.63%20 / 10.53%
    Day 3107 / 56.32%55 / 28.95%28 / 14.74%109 / 57.37%46 / 24.21%35 / 18.42%
    Day 5115 / 60.53%45 / 23.68%30 / 15.79%113 / 59.47%46 / 24.21%31 / 16.32%
    RBFDay 1157 / 82.63%22 / 11.58%11 / 5.79%151 / 79.47%27 / 14.21%12 / 6.32%
    Day 3150 / 78.95%20 / 10.53%20 / 10.53%138 / 72.63%32 / 16.84%20 / 10.53%
    Day 5143 / 75.26%19 / 10.00%21 / 11.05%129 / 67.89%28 / 14.74%24 / 12.63%
    ESNDay 1111 / 58.42%53 / 27.89%26 / 13.68%108 / 56.84%56 / 29.47%26 / 13.68%
    Day 3102 / 53.68%58 / 30.53%30 / 15.79%99 / 52.11%61 / 32.11%30 / 15.79%
    Day 5106 / 55.79%52 / 27.37%32 / 16.84%105 / 55.26%46 / 24.21%39 / 20.53%
    ElmanDay 1142 / 74.74%32 / 16.84%16 / 8.42%142 / 74.74%35 / 18.42%13 / 6.84%
    Day 3116 / 61.05%47 / 24.74%27 / 14.21%129 / 67.89%31 / 16.32%30 / 15.79%
    Day 5109 / 57.37%54 / 28.42%27 / 14.21%111 / 58.42%47 / 24.74%32 / 16.84%
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Feng Z L. Promote the high-quality development of civil aviation with the new development concept. People's Forum, 2019(5): 6 doi: 10.3969/j.issn.1004-3381.2019.05.001

    馮正霖. 以新發展理念引領新時代民航高質量發展. 人民論壇, 2019(5):6 doi: 10.3969/j.issn.1004-3381.2019.05.001
    [2] Bowen B D, Headley D E, Luedtke J R. A quantitative methodology for measuring airline quality. J Aviation/Aerospace Educ Res, 1992, 2(2): 27
    [3] Lower M, Magott J, Skorupski J. Analysis of air traffic incidents using event trees with fuzzy probabilities. Fuzzy Sets Syst, 2016, 293(C): 50
    [4] Kokangül A, Polat U, Dagsuyu C. A new approximation for risk assessment using the AHP and Fine Kinney methodologies. Saf Sci, 2017, 91: 24 doi: 10.1016/j.ssci.2016.07.015
    [5] FAA. Flight risk assessment tool[EB/OL]. Federal Aviation Administration Online (2007-08-02)[2018-08-31]. https://www.faa.gov/news/safety_briefing/2016/media/SE_Topic_16-12.pdf
    [6] NATA. NATA’s risk assessment tool?RA Check[EB/OL]. National Air Transportation Association Online (2012-01-23)[2018-08-31]. https://www.acukwikalert.com/on-the-radar/2010/3/9/natas-ra-check-automated-risk-assessment-tool-launched-at-sa.html
    [7] Sun R S, Liu H H. Assessment theory and practice for airline safety. China Saf Sci J, 1999, 9(3): 69 doi: 10.3969/j.issn.1003-3033.1999.03.014

    孫瑞山, 劉漢輝. 航空公司安全評估理論與實踐. 中國安全科學學報, 1999, 9(3):69 doi: 10.3969/j.issn.1003-3033.1999.03.014
    [8] Wang Y T, Li R, Lu F, et al. Risk assessment system of flight operation based on multiple factor analysis. J Tianjin Polytech Univ, 2014, 33(3): 84 doi: 10.3969/j.issn.1671-024X.2014.03.017

    王巖韜, 李蕊, 盧飛, 等. 基于多因素分析的航班運行風險評估體系. 天津工業大學學報, 2014, 33(3):84 doi: 10.3969/j.issn.1671-024X.2014.03.017
    [9] Wang Y T, Zhao Y F. Research on flight operations risk identification based on multi-algorithm collaboration. China Saf Sci J, 2018, 28(6): 166

    王巖韜, 趙嶷飛. 基于多算法協作的航班運行風險辨識研究. 中國安全科學學報, 2018, 28(6):166
    [10] PROSPEROFP7. Aviation sector collaborates to make ultra-safe travel even safer[EB/OL]. PROSPERO Online (2015-11-12)[2018.10.26]. http://www.prosperofp7.eu/news/36-aviation-sector-collaborates-to-make-ultra-safe-travel-even-safer
    [11] Lalis A, Socha V, Kraus J, et al. Conditional and unconditional safety performance forecasts for aviation predictive risk management // 2018 IEEE Aerospace Conference. Big Sky, 2018
    [12] Zhang X G, Mahadevans S. Ensemble machine learning models for aviation incident risk prediction. Decision Support Syst, 2019, 116: 48 doi: 10.1016/j.dss.2018.10.009
    [13] Wang Y T, Liu H, Tang J X, et al. Dynamic prediction technology in the application of flight operation risk. Control Decision, 2019, 34(9): 1946

    王巖韜, 劉宏, 唐建勛, 等. 動態預測技術在航班運行風險中的應用. 控制與決策, 2019, 34(9):1946
    [14] Li M, Xu J W, Yang J H, et al. Prediction for chaotic time series based on phase reconstruction of multivariate time series. J Univ Sci Technol Beijing, 2008, 30(2): 208 doi: 10.3321/j.issn:1001-053X.2008.02.021

    黎敏, 徐金梧, 陽建宏, 等. 基于多變量相重構的混沌時間序列預測. 北京科技大學學報, 2008, 30(2):208 doi: 10.3321/j.issn:1001-053X.2008.02.021
    [15] Fang F. Volterra adaptive real-time prediction of multivariate chaotic time series. Syst Eng Electron, 2009, 31(10): 2476 doi: 10.3321/j.issn:1001-506X.2009.10.043

    方芬. 多變量混沌時間序列Volterra自適應實時預測. 系統工程與電子技術, 2009, 31(10):2476 doi: 10.3321/j.issn:1001-506X.2009.10.043
    [16] Zhang C T, Ma Q L, Peng H, et al. Multivariate chaotic time series phase space reconstruction based on extending dimension by conditional entropy. Acta Phys Sin, 2011, 60(2): 118

    張春濤, 馬千里, 彭宏, 等. 基于條件熵擴維的多變量混沌時間序列相空間重構. 物理學報, 2011, 60(2):118
    [17] Hou G Y, Liang R, Sun L, et al. Risk analysis on long inclined-shaft construction in coalmine by TBM techniques based on multiple variables chaotic time series. Acta Phys Sin, 2014, 63(9): 111

    侯公羽, 梁榮, 孫磊, 等. 基于多變量混沌時間序列的煤礦斜井TBM施工動態風險預測. 物理學報, 2014, 63(9):111
    [18] Zhong Y H, Lin X X, Liu Y X. The oilfield output prediction model based on multivariate chaotic time series. Math Pract Theory, 2016, 46(6): 99

    鐘儀華, 林旭旭, 劉雨鑫. 基于多元混沌時間序列的油田產量預測模型. 數學的實踐與認識, 2016, 46(6):99
    [19] Du L Q, Zeng C L, Yu Y W. Prediction of numerical control machine's motion precision based on multivariate chaotic time series. Trans Chin Soc Agric Mach, 2017, 48(3): 390 doi: 10.6041/j.issn.1000-1298.2017.03.050

    杜柳青, 曾翠蘭, 余永維. 基于多元混沌時間序列的數控機床運動精度預測. 農業機械學報, 2017, 48(3):390 doi: 10.6041/j.issn.1000-1298.2017.03.050
    [20] Zhang S Q, Liu Z Y, He H Y, et al. Optimization and application of weighted one-rank local chaos prediction model based on multi-variable. Acta Metrol Sin, 2018, 39(1): 77 doi: 10.3969/j.issn.1000-1158.2018.01.17

    張淑清, 劉子玥, 何泓運, 等. 基于多變量加權一階局域混沌預測模型優化及應用. 計量學報, 2018, 39(1):77 doi: 10.3969/j.issn.1000-1158.2018.01.17
    [21] Huang F M, Yin K L, Yang B B, et al. Step-like displacement prediction of landslide based on time series decomposition and multivariate chaotic model. Earth Sci, 2018, 43(3): 887

    黃發明, 殷坤龍, 楊背背, 等. 基于時間序列分解和多變量混沌模型的滑坡階躍式位移預測. 地球科學, 2018, 43(3):887
    [22] Coleman M E, Marks H M. Qualitative and quantitative risk assessment. Food Control, 1999, 10(4-5): 289 doi: 10.1016/S0956-7135(99)00052-3
    [23] Takens F. Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics. Heidelberg: Springer-verlag, 1981: 366
    [24] He X Q. Multivariate Statistical Analysis. 4th Ed. Beijing: China Renmin University Press, 2015

    何曉群. 多元統計分析. 4版. 北京: 中國人民大學出版社, 2015
    [25] Jiang X Y, Guo Y, Shi H Y, et al. Multivariable nonlinear RBF neural network predictive control based on TSA. Control Eng China, 2019, 26(9): 1655

    姜雪瑩, 郭穎, 施惠元, 等. 基于TSA多變量非線性RBF神經網絡預測控制. 控制工程, 2019, 26(9):1655
    [26] Xu M L, Han M. Factor echo state network for multivariate chaotic time series prediction. Acta Autom Sin, 2015, 41(5): 1042

    許美玲, 韓敏. 多元混沌時間序列的因子回聲狀態網絡預測模型. 自動化學報, 2015, 41(5):1042
  • 加載中
圖(10) / 表(7)
計量
  • 文章訪問數:  1894
  • HTML全文瀏覽量:  983
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-12-09
  • 刊出日期:  2020-12-25

目錄

    /

    返回文章
    返回