Status and research progress on recovery of platinum group metals from spent catalysts
-
摘要: 我國鉑族金屬(Platinum group metals, PGMs)儲量少,消費量大,對外依存度高,PGMs二次資源的回收利用是緩解我國PGMs短缺最重要的途徑。廢催化劑是PGMs最主要的來源,其回收成為研究的熱點。本文詳細介紹了PGMs消費結構與回收現狀,全球PGMs回收量約占原礦產量的20%~30%,且將保持持續增長的趨勢。樣品的精準分析對PGMs回收有至關重要的作用,同時還原、焙燒、機械球磨等預處理能提高PGMs回收率。相對于傳統氰化法和王水溶解,近年來開發出氯化浸出法、超臨界萃取法、載體溶解法等較環保的浸出工藝。盡管部分濕法浸出工藝已經產業化應用,但存在廢水量大、產生有毒氣體及回收率低(特別是Rh)的問題。火法富集是以鉛、銅、鐵、鎳锍為捕集劑,與PGMs形成合金富集,載體熔化造渣。本文對上述富集方法進行了綜述并總結了優缺點,基于現有技術存在的污染嚴重、PGMs回收率不高等問題,展望了PGMs綠色高效回收技術,如活化預處理、協同提取有價金屬和載體利用、賤金屬協同冶煉和鐵捕集–電解等,為從事該領域的科研工作者提供了良好的參考。Abstract: In China, the reserves of platinum group metals (PGMs) are scarce, but the consumption of PGMs is enormous, which has resulted in a high external dependence. As more than 90% of PGMs are used by the catalyst industry, spent catalysts are the most important secondary source. Therefore, recycling PGMs from spent catalysts is the most significant strategy for relieving the risk of shortage in the PGMs supply. In this review, the consumption distribution of PGMs and their recycling status were introduced and recycling technologies were discussed in detail. The volume of recycled PGMs has been estimated to be approximately 20%–30% of the global mine production and this trend is increasing. Sample analysis is considered to be crucial for determining the recovery efficiency of PGMs. Extensive studies have shown that pretreatment methods such as reduction, calcination, and mechanical milling can improve the efficiency of PGMs recovery. Compared with traditional cyanide leaching and aqua regia dissolution, more environmentally friendly leaching methods have been developed in recent years, including chlorination leaching, supercritical fluids extraction, and substrates leaching. However, although some hydrometallurgical processes have been industrialized, their disadvantages include the generation of wastewater, emission of hazardous gases, and low recovery efficiency of Rh, which must be carefully evaluated. Pyrometallurgical methods have been widely used to concentrate PGMs due to the generally low PGMs content in spent catalysts. Lead, copper, iron, and matte are good PGMs collectors, whereby the PGMs form alloys with the collector metals and supporting materials, then enter the slag phase. These melting collection methods were reviewed and their advantages and disadvantages were summarized. Based on the serious environmental problems and low recovery efficiency of PGMs by current technologies, future trends for PGMs recycling have been proposed, including activation pretreatments, co-recovery of valuable metals and carrier materials, base metals synergistic smelting, iron melting capture, and electrolysis. These recycling technologies may indicate the development directions and can serve as effective references for further research in this field.
-
表 1 不同廢催化劑的分析方法及結果
Table 1. Determination of PGMs in spent catalysts by various methods
Catalysts (carriers) Elements Analysis methods RSD/% Ref Spent automotive catalysts Pt, Pd, Rh Carius tube+ICP–AES 1~2 [12] HCl–H2O2+ICP–AES 4.5~5.1 [13] Spent catalysts (Al2O3/SiO2) Pt ICP–AES standard curve method <3 [14] Spent Oxo-alcohols Catalyst Rh H2SO4–H2O2–HCl+ICP–OES 0.92 [15] Spent catalysts (SiO2) Rh Chemical vapour generation+ICP–AES 1.6 [16] Spent catalyst (Al2O3/SiO2) Pt, Pd Fire assaying+ICP–AES <2 [17] Spent dehydrogenation catalyst Pt Aqua regia+FAAS <3.45 [18] Spent Pd–C catalyst Pd H2SO4–HNO3+ICP–AES 1.52 [19] 表 2 25 ℃ PGMs的標準電極電位
Table 2. Standard electrode potentials of PGMs at 25 ℃
Electrode reactions ε0/V ${\rm{PdBr}}_4^{2 - }$+2e?=Pd+4Br? 0.60 ${\rm{PdCl}}_4^{2 - }$+2e?=Pd+4Cl? 0.62 ${\rm{PdCl}}_6^{2 - }$+2e?=${\rm{PdCl}}_4^{2 - }$+2Cl? 1.29 ${\rm{PtBr}}_4^{2 - }$+2e?=Pt+4Br? 0.58 ${\rm{PtBr}}_6^{2 - }$+2e?=${\rm{PtBr}}_4^{2 - }$+2Br? 0.59 ${\rm{PtCl}}_6^{2 - }$+4e?=Pt+6Cl? 0.74 ${\rm{RhCl}}_6^{3 - }$+3e?=Rh+6Cl? 0.43 ${\rm{PdCN}}_4^{2 - }$+2e?=Pd+4CN? 0.40 ${\rm{PtCN}}_4^{2 - }$+2e?=Pt+4CN? 0.09 表 3 部分典型賤金屬捕集PGMs工藝
Table 3. Some typical pyrometallurgical processes for PGM recycling
Countries Company names Furnaces Collectors Belgium Umicore Isasmelt furnace Copper America Multimetco DC electrical arc furnace Copper Japan Tanaka Plasma melting furnace Iron England Johnson-Matthey Plasma melting furnace Iron China Sino-Platinum Metals Plasma melting furnace Iron 259luxu-164 -
參考文獻
[1] Ma T, Zhang W Y, Jia D L. The present situation of platinum metal resources and demand trend. Conserv Utiliz Min Resour, 2019, 39(5): 90馬騰, 張萬益, 賈德龍. 鉑資源現狀與需求趨勢. 礦產保護與利用, 2019, 39(5):90 [2] Shen C S, Zhang W, Yang J, et al. Review of the recycling of spent automotive three-way catalysts. Environ Pollut Control, 2015, 37(4): 78沈傳松, 張巍, 楊驥, 等. 廢汽車尾氣三元催化劑的回收利用研究進展. 環境污染與防治, 2015, 37(4):78 [3] Pietrelli L, Fontana D. Automotive spent catalysts treatment and platinum recovery. Int J Environ Waste Manage, 2013, 11(2): 222 doi: 10.1504/IJEWM.2013.051845 [4] Chen J P, Wang H B, Gong W X. Progress of platinum group metals recovery from spent catalysts in petroleum and chemical industries. China Resour Compr Utiliz, 2017, 35(8): 69 doi: 10.3969/j.issn.1008-9500.2017.08.025陳積平, 王海北, 龔衛星. 石化行業鉑族金屬廢催化劑回收技術現狀. 中國資源綜合利用, 2017, 35(8):69 doi: 10.3969/j.issn.1008-9500.2017.08.025 [5] Molnár á, Papp A. Catalyst recycling?a survey of recent progress and current status. Coord Chem Rev, 2017, 349: 1 doi: 10.1016/j.ccr.2017.08.011 [6] Gürsel I V, No?l T, Wang Q, et al. Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chem, 2015, 17(4): 2012 doi: 10.1039/C4GC02160F [7] Zhang S G, Ding Y J, Liu B, et al. Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manage, 2017, 65: 113 doi: 10.1016/j.wasman.2017.04.003 [8] Chen X F, Peng R M. Analysis of platinum metals resources conditions and strategy for sustainable development of platinum metals industry in China. Multipurp Utiliz Miner Resour, 2007(2): 27 doi: 10.3969/j.issn.1000-6532.2007.02.008陳喜峰, 彭潤民. 中國鉑族金屬資源形勢分析及可持續發展對策探討. 礦產綜合利用, 2007(2):27 doi: 10.3969/j.issn.1000-6532.2007.02.008 [9] Wang C. Variety and development trends of petrochemical and chemical catalysts. Fine Spec Chem, 2015, 23(10): 1 doi: 10.3969/j.issn.1008-1100.2015.10.001王晨. 石化催化劑的品種與未來發展. 精細與專用化學品, 2015, 23(10):1 doi: 10.3969/j.issn.1008-1100.2015.10.001 [10] Zhang H F, Wang B, Wang X D. Preparation and characterization of oxo composite Pt/C catalyst and study on its catalytic performance for electro-oxidation of methanol. J Univ Sci Technol Beijing, 2007, 29(12): 1241 doi: 10.3321/j.issn:1001-053x.2007.12.014張紅飛, 王博, 王新東. 含氧復合型Pt/C催化劑的制備、表征及其對甲醇電氧化催化性能的研究. 北京科技大學學報, 2007, 29(12):1241 doi: 10.3321/j.issn:1001-053x.2007.12.014 [11] Huang X B, Wang J J, Zheng H Y, et al. Catalytic performance of Pd-doped α-MnO2 for oxidation of benzyl alcohol under solvent-free conditions. Chin J Eng, 2019, 41(2): 230黃秀兵, 王靜靜, 鄭海燕, 等. 鈀摻雜α-MnO2無溶劑下催化氧化苯甲醇的性能. 工程科學學報, 2019, 41(2):230 [12] Pennebaker F M, Denton M B. High-precision, simultaneous analysis of Pt, Pd, and Rh in catalytic converter samples by Carius tube dissolution and inductively coupled plasma atomic emission spectroscopy with charge-injection device detection. Appl Spectrosc, 2001, 55(4): 504 doi: 10.1366/0003702011952037 [13] Fang W, Hu J, Zhao Y K, et al. Study on effect of interference on determination of Pt, Pd, Rh in automobile catalysts by ICP-AES. Chin J Anal Lab, 2009, 28(5): 86 doi: 10.3969/j.issn.1000-0720.2009.05.023方衛, 胡潔, 趙云昆, 等. ICP-AES測定汽車催化劑中Pt、Rd、Rh的干擾研究. 分析試驗室, 2009, 28(5):86 doi: 10.3969/j.issn.1000-0720.2009.05.023 [14] Yu F S. Determination of platinum in waste catalyst of petrochemical industry by inductively coupled plasma atomic emission spectrometry. China Resour Compr Utiliz, 2017, 35(6): 15 doi: 10.3969/j.issn.1008-9500.2017.06.010郁豐善. 電感耦合等離子體原子發射光譜法測定石油化工廢催化劑中鉑的含量. 中國資源綜合利用, 2017, 35(6):15 doi: 10.3969/j.issn.1008-9500.2017.06.010 [15] Yu F S, Su J. Determination of rhodium in spent oxo-alcohols catalyst by inductively coupled plasma atomic emission spectrometry. China Resour Compr Utiliz, 2017, 35(11): 38 doi: 10.3969/j.issn.1008-9500.2017.11.014郁豐善, 蘇婧. 電感耦合等離子體原子發射光譜法測定丁辛醇廢催化劑中的銠含量. 中國資源綜合利用, 2017, 35(11):38 doi: 10.3969/j.issn.1008-9500.2017.11.014 [16] Duan X C. Determination of rhodium by inductively coupled plasma atomic emission spectrometry with chemical vapour generation sample introduction technique. Chin J Anal Chem, 2010, 38(3): 421段旭川. 在線化學蒸氣發生-電感耦合等離子體原子發射光譜法測定廢催化劑中的微量銠. 分析化學, 2010, 38(3):421 [17] Chen C Y, Zhang X. Determination of Pt and Pd content in spent catalyst by fire assaying. China Resour Compr Utiliz, 2016, 34(11): 27 doi: 10.3969/j.issn.1008-9500.2016.11.013陳潮炎, 張俠. 火試金法測定廢催化劑中鉑、鈀含量研究. 中國資源綜合利用, 2016, 34(11):27 doi: 10.3969/j.issn.1008-9500.2016.11.013 [18] Yao L Z, Yang H M, Song Y, et al. Determination of platinum, tin and lithium in dehydrogenation catalyst by flame atomic absorption spectrometry. Metall Anal, 2003, 23(5): 14 doi: 10.3969/j.issn.1000-7571.2003.05.005姚麗珠, 楊紅苗, 宋義, 等. 火焰原子吸收光譜法測定脫氫催化劑中鉑、錫、鋰的含量. 冶金分析, 2003, 23(5):14 doi: 10.3969/j.issn.1000-7571.2003.05.005 [19] Wang T, Liu D L, Wang M G, et al. Determination the Pd content in Pd-C catalyst by ICP emission spectroscopy. Polyest Ind, 2012, 25(6): 31 doi: 10.3969/j.issn.1008-8261.2012.06.010王鐵, 劉殿麗, 王明剛, 等. 等離子發射光譜法測定鈀炭催化劑中鈀含量. 聚酯工業, 2012, 25(6):31 doi: 10.3969/j.issn.1008-8261.2012.06.010 [20] Ren C T, Fang W, Li Q, et al. Development of reference materials of waste autocatalysts for analysis. Precious Met, 2014, 35(3): 49 doi: 10.3969/j.issn.1004-0676.2014.03.013任傳婷, 方衛, 李青, 等. 廢汽車尾氣凈化催化劑分析用標準樣品的研制. 貴金屬, 2014, 35(3):49 doi: 10.3969/j.issn.1004-0676.2014.03.013 [21] Chen J. Discussion on the micro-mechanism of precious metals trapped in pyro-metallurgical processes by base metals and matte phase. Eng Sci, 2007, 9(5): 11 doi: 10.3969/j.issn.1009-1742.2007.05.003陳景. 火法冶金中賤金屬及锍捕集貴金屬原理的討論. 中國工程科學, 2007, 9(5):11 doi: 10.3969/j.issn.1009-1742.2007.05.003 [22] Chen J. Chemical Metallurgy of Platinum Group Metals. Beijing: Science Press, 2008陳景. 鉑族金屬化學冶金. 北京: 科學出版社, 2008 [23] Trinh H B, Lee J, Srivastava R R, et al. Eco-threat minimization in HCl leaching of PGMs from spent automobile catalysts by formic acid prereduction. ACS Sustainable Chem Eng, 2017, 5(8): 7302 doi: 10.1021/acssuschemeng.7b01538 [24] Wan J, Yu J M, Bi X G, et al. Study on pretreatment of spent auto-catalysts. Nonferrous Met (Extract Metall) , 2015(4): 28萬婧, 余建民, 畢向光, 等. 汽車失效催化劑預處理方法研究. 有色金屬(冶煉部分), 2015(4):28 [25] Wei X, Liu C W, Cao H B, et al. Understanding the features of PGMs in spent ternary automobile catalysts for development of cleaner recovery technology. J Clean Prod, 2019, 239: 118031 doi: 10.1016/j.jclepro.2019.118031 [26] Marsden J O, House C I. The Chemistry of Gold Extraction. Littleton: Society for Mining, Metallurgy, and Exploration, Inc., 2006 [27] Shams K, Beiggy M R, Shirazi A G. Platinum recovery from a spent industrial dehydrogenation catalyst using cyanide leaching followed by ion exchange. Appl Catal A, 2004, 258(2): 227 doi: 10.1016/j.apcata.2003.09.003 [28] Kuczynski R J, Atkinson G B, Walters L A. High-temperature cyanide leaching of platinum-group metals from automobile catalysts--process development unit // Report of Investigations (United States. Bureau of Mines). Nevada, 1992 [29] Kuczynski R J, Atkinson G B, Dolinar W J. Recovery of platinum group metals from automobile catalysts--Pilot plant operation // International Symposium on Reycling of Metals and Engineered Materials. Warrendale: Minerals, Metals and Materials Society, 1995 [30] Huang K, Chen J, Chen Y R, et al. Recovery of precious metals from spent auto-catalysts by method of pressure alkaline treatment-cyanide leaching. Chin J Nonferrous Met, 2006, 16(2): 363 doi: 10.3321/j.issn:1004-0609.2006.02.027黃昆, 陳景, 陳奕然, 等. 加壓堿浸處理-氰化浸出法回收汽車廢催化劑中的貴金屬. 中國有色金屬學報, 2006, 16(2):363 doi: 10.3321/j.issn:1004-0609.2006.02.027 [31] Naghavi Z, Ghoreishi S M, Rahimi A, et al. Kinetic study for platinum extraction from spent catalyst in cyanide solution at high temperatures. Int J Chem React Eng, 2016, 14(1): 143 doi: 10.1515/ijcre-2015-0046 [32] Kim M, Lee J, Park S, et al. Dissolution behavior of platinum by electro-generated chlorine in hydrochloric acid solution. J Chem Technol Biotechnol, 2013, 88(7): 1212 doi: 10.1002/jctb.3957 [33] Upadhyay A K, Lee J, Kim E, et al. Leaching of platinum group metals (PGMs) from spent automotive catalyst using electro‐generated chlorine in HCl solution. J Chem Technol Biotechnol, 2013, 88(11): 1991 [34] Chen S, Shen S B, Cheng Y, et al. Effect of O2, H2 and CO pretreatments on leaching Rh from spent auto-catalysts with acidic sodium chlorate solution. Hydrometallurgy, 2014, 144-145: 69 doi: 10.1016/j.hydromet.2014.01.018 [35] Li Q, Hu L, Yang Y B, et al. Research on recovery of palladium from spent catalyst. Hydrometall China, 2017, 36(1): 41李騫, 胡龍, 楊永斌, 等. 從失效催化劑中回收鈀的試驗研究. 濕法冶金, 2017, 36(1):41 [36] de Aberasturi D J, Pinedo R, de Larramendi I R, et al. Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters. Miner Eng, 2011, 24(6): 505 doi: 10.1016/j.mineng.2010.12.009 [37] Kizilaslan E, Akta? S, ?e?en M K. Towards environmentally safe recovery of platinum from scrap automotive catalytic converters. Turk J Eng Environ Sci, 2009, 33(2): 83 [38] Sario?lan ?. Recovery of palladium from spent activated carbon-supported palladium catalysts. Platinum Met Rev, 2013, 57(4): 289 doi: 10.1595/147106713X663988 [39] Barakat M A, Mahmoud M H H, Mahrous Y S. Recovery and separation of palladium from spent catalyst. Appl Catal A, 2006, 301(2): 182 doi: 10.1016/j.apcata.2005.11.028 [40] Ding Y J, Zheng H D, Li J Y, et al. Recovery of platinum from spent petroleum catalysts: Optimization using response surface methodology. Metals, 2019, 9(3): 354 doi: 10.3390/met9030354 [41] Nogueira C A, Paiva A P, Oliveira P C, et al. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters. J Hazard Mater, 2014, 278: 82 doi: 10.1016/j.jhazmat.2014.05.099 [42] Nogueira C A, Paiva A P, Costa M C, et al. Leaching efficiency and kinetics of the recovery of palladium and rhodium from a spent auto-catalyst in HCl/CuCl2 media. Environ Technol[2019-01-03] doi.org/10.1080/09593330.2018.1563635 [43] Ding Y J, Zheng H D, Li J Y, et al. An efficient leaching of palladium from spent catalysts through oxidation with Fe (III). Materials, 2019, 12(8): 1205 doi: 10.3390/ma12081205 [44] Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing. Nature, 1996, 383(6598): 313 doi: 10.1038/383313a0 [45] Laintz K E, Wai C M, Yonker C R, et al. Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide. Anal Chem, 1992, 64(22): 2875 doi: 10.1021/ac00046a039 [46] Faisal M, Atsuta Y, Daimon H, et al. Recovery of precious metals from spent automobile catalytic converters using supercritical carbon dioxide. Asia-Pac J Chem Eng, 2008, 3(4): 364 doi: 10.1002/apj.156 [47] Iwao S, El-Fatah S A, Furukawa K, et al. Recovery of palladium from spent catalyst with supercritical CO2 and chelating agent. J Supercrit Fluids, 2007, 42(2): 200 doi: 10.1016/j.supflu.2007.03.010 [48] Wang J S, Wai C M. Dissolution of precious metals in supercritical carbon dioxide. Ind Eng Chem Res, 2005, 44(4): 922 doi: 10.1021/ie040198m [49] Koehler J, Zuber R, Binder M, et al. Process for Recycling Fuel Cell Components Containing Precious Metals: U.S. Patent 7713502. 2010-05-11 [50] Jafarifar D, Daryanavard M R, Sheibani S. Ultra fast microwave-assisted leaching for recovery of platinum from spent catalyst. Hydrometallurgy, 2005, 78(3-4): 166 doi: 10.1016/j.hydromet.2005.02.006 [51] Yao X Z, Zhang Z B, Peng J H, et al. Microwave-heated Alkali activation, water dissolving and HCl leaching of used firebrick from glass fiber industry for enrichment of Pt and Rh. Chin J Process Eng, 2011, 11(4): 579姚現召, 張澤彪, 彭金輝, 等. 玻纖工業廢耐火磚中鉑銠金屬微波堿熔活化-水溶酸浸富集工藝. 過程工程學報, 2011, 11(4):579 [52] Suoranta T, Zugazua O, Niemel? M, et al. Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy, 2015, 154: 56 doi: 10.1016/j.hydromet.2015.03.014 [53] Niemel? M, Pitk?aho S, Ojala S, et al. Microwave-assisted aqua regia digestion for determining platinum, palladium, rhodium and lead in catalyst materials. Microchem J, 2012, 101: 75 doi: 10.1016/j.microc.2011.11.001 [54] de Sá Pinheiro A A, de Lima T S, Campos P C, et al. Recovery of platinum from spent catalysts in a fluoride-containing medium. Hydrometallurgy, 2004, 74(1-2): 77 doi: 10.1016/j.hydromet.2004.01.001 [55] Kim M, Kim E, Jeong J, et al. Recovery of platinum and palladium from the spent petroleum catalysts by substrate dissolution in sulfuric acid. Mater Trans, 2010, 51(10): 1927 doi: 10.2320/matertrans.M2010218 [56] Li F, Zhuang C L. Present status and technology research development on recycling of spent automobile exhaust purification catalysts. Resour Recycl, 2015(11): 46李菲, 莊昌凌. 報廢汽車尾氣凈化催化劑的回收現狀及技術研究進展. 資源再生, 2015(11):46 [57] Guan Y X, Xu G, Wang Y J, et al. Study on gold as protective reagent for enrichment Pt, Pd and Rh by lead assaying for automobile exhaust-purifying catalysts. Precious Met, 2011, 32(2): 67 doi: 10.3969/j.issn.1004-0676.2011.02.014管有祥, 徐光, 王應進, 等. 用金作保護劑鉛試金富集汽車尾氣凈化催化劑中鉑鈀銠的研究. 貴金屬, 2011, 32(2):67 doi: 10.3969/j.issn.1004-0676.2011.02.014 [58] Wang Y L, Liu Z H. Gold, Silver and Platinum Group Metals Recovery. Changsha: Central South University Press, 2007王永錄, 劉正華. 金, 銀及鉑族金屬再生回收. 長沙: 中南大學出版社, 2007 [59] Hagelüken C. Recycling of electronic scrap at Umicore precious metals refining. Acta Metall Slov, 2006, 12: 111 [60] Zhao J C, Cui H, Bao S M, et al. Recovery of Pt, Pd and Rh from spent auto catalysts by copper collection method. Precious Met, 2018, 39(1): 56 doi: 10.3969/j.issn.1004-0676.2018.01.010趙家春, 崔浩, 保思敏, 等. 銅捕集法從失效汽車催化劑中回收鉑、鈀和銠的研究. 貴金屬, 2018, 39(1):56 doi: 10.3969/j.issn.1004-0676.2018.01.010 [61] Zhang L G, Song Q M, Liu Y, et al. Novel approach for recovery of palladium in spent catalyst from automobile by a capture technology of eutectic copper. J Clean Prod, 2019, 239: 118093 doi: 10.1016/j.jclepro.2019.118093 [62] Kolliopoulos G, Balomenos E, Giannopoulou I, et al. Behavior of platinum group metals during their pyrometallurgical recovery from spent automotive catalysts. Open Access Lib J, 2014, 1(5): e736 [63] Wang Y J, Li X Z. Progress in recycling of precious metals in automobile catalysts. Chin J Rare Met, 2013, 37(6): 1004王亞軍, 李曉征. 汽車尾氣凈化催化劑貴金屬回收技術. 稀有金屬, 2013, 37(6):1004 [64] He X T, Li Y, Wu X L, et al. Study on the process of enrichment platinum group metals by plasma melting technology. Precious Met, 2016, 37(1): 1 doi: 10.3969/j.issn.1004-0676.2016.01.001賀小塘, 李勇, 吳喜龍, 等. 等離子熔煉技術富集鉑族金屬工藝初探. 貴金屬, 2016, 37(1):1 doi: 10.3969/j.issn.1004-0676.2016.01.001 [65] Benson M, Bennett C R, Harry J E, et al. The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems. Resour Conserv Recycl, 2000, 31(1): 1 doi: 10.1016/S0921-3449(00)00062-8 [66] Benson M, Bennett C R, Patel M K, et al. Collector-metal behaviour in the recovery of platinum-group metals from catalytic converters. Miner Process Extract Metall, 2000, 109(1): 6 doi: 10.1179/mpm.2000.109.1.6 [67] Ding Y J. Research on the Mechanism and Application of Platinum Group Metals Enrichment from Spent Catalysts[Dissertation]. Beijing: University of Science and Technology Beijing, 2019丁云集. 廢催化劑中鉑族金屬富集機理及應用研究[學位論文]. 北京: 北京科技大學, 2019 [68] Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644 [69] Zhang S G, Ding Y J, Wen Q. Recovery of Platinum Group Metals from Fe-PGMs Alloy via Electrolysis: China Patent, 201911012903.0. 2020-01-07張深根, 丁云集, 溫泉. 一種Fe-PGMs合金電解回收鉑族金屬的方法: 中國專利, 201911012903.0. 2020-01-07 [70] He X T, Wang H, Wu X L, et al. Study on the recovery of rhodium from spent organic rhodium catalysts of acetic acid industry using pyrometallurgical process. Precious Met, 2012, 33(Suppl1): 24 [71] You G, Fang W, Li Q, et al. Study on enrichment method of platinum, palladium and rhodium in spent auto-catalysts. Metall Aanl, 2016, 36(5): 7游剛, 方衛, 李青, 等. 失效汽車催化劑中鉑鈀銠富集方法探討. 冶金分析, 2016, 36(5):7 [72] Allen R J, Foller P C, Giallombardo J. Two-Step Method for Recovering Dispersed Noble Metals: US Patent 5102632. 1992-04-07 [73] Bronshtein I, Feldman Y, Shilstein S, et al. Efficient chloride salt extraction of platinum group metals from spent catalysts. J Sustainable Metall, 2018, 4(1): 103 doi: 10.1007/s40831-017-0155-z [74] Huang K, Chen J. Progress in PGM recovery from spent automobile catalytic converters. Nonferrous Met, 2004, 56(1): 70黃焜, 陳景. 從失效汽車尾氣凈化催化轉化器中回收鉑族金屬的研究進展. 有色金屬, 2004, 56(1):70 [75] Kim C H, Woo S I, Jeon S H. Recovery of platinum-group metals from recycled automotive catalytic converters by carbochlorination. Ind Eng Chem Res, 2000, 39(5): 1185 doi: 10.1021/ie9905355 -