Preparation and hydration mechanism of low concentration Bayer red mud filling materials
-
摘要: 針對礦山充填中拜耳法赤泥利用率較低或低濃度赤泥充填材料存在強度低、泌水量高、易收縮等問題,研究粉煤灰添加比例、脫硫石膏、石灰及激發劑對赤泥充填材料早期強度及體積穩定性的影響,采用掃描電子顯微鏡-能譜儀(SEM-EDS)和X射線衍射(XRD)分析手段探討赤泥基充填材料的水化機理。結果表明,脫硫石膏促進鈣礬石的生成,石灰促進粉煤灰火山灰效應,激發劑可以加快赤泥?粉煤灰水化反應進程,三者協同作用提高赤泥充填體強度。充填材料28 d抗壓強度3.35 MPa,且初始及60 min流動度在200 mm以上。微觀實驗表明,硬化體水化產物為鈣礬石、硬柱石、硅鋁酸鹽凝膠類礦物,水化產物通過填充孔隙,提高漿體強度。赤泥基充填材料固體廢棄物利用率達到92%,無泌水,無沉縮,具有較高的經濟價值和環保價值。Abstract: Red mud is a solid waste produced in the process of bauxite refining alumina, with high alkali content, and its treatment methods are mainly stacking and ocean dumping, which not only occupy a large amount of cultivated land and pollute land and water sources, but also have high safety risk. The preparation of red mud-based filling materials to fill the underground goaf can improve the utilization rate of mineral resources and reduce the harm of red mud to the environment, which has the effect of killing two birds with one stone. In view of the problems of low utilization rate of bayer red mud in mine filling system, low strength, bleeding and shrinkage in filling materials slurry with low concentration, the effects of the addition ratio of fly ash, desulfurization gypsum, lime and initiator on the early strength and volume stability were studied in this paper. Scanning electron microscope- energy dispersive spectroscope (SEM-EDS) and X-ray diffraction (XRD) were used to analyze the hydration mechanism of the filling materials. The results show that when the ratio of red mud to fly ash is 4∶6, the mechanical properties of the filling material are the best. Desulfurized gypsum promotes the formation of ettringite. Lime promotes the pozzolanic effect of fly ash. The composite activator can accelerate the hydration process of red mud and fly ash. All of this enhance the red mud backfill strength. The filling materials 28 d compressive strength is 3.35 MPa, and the initial and 60 min fluidity are above 200 mm. Microscopic test results show that the hydration products of hardened paste are ettringite, lawsonite, silica aluminate gel, which fill the pores and improve the strength of slurry. Through adding activator, activating red mud activity and designing low concentration filling material, it is the direction of mass and green utilization of red mud, desulfurization gypsum and other solid wastes. The utilization ratio of solid waste of red mud filling materials reaches 92%, no bleeding, no shrinkage, and has high economic value and environmental value.
-
Key words:
- low concentration /
- bayer red mud /
- filling materials /
- preparation /
- hydration mechanism
-
表 1 各材料化學組成分析
Table 1. Chemical composition analysis of each material
% Materials SiO2 Al2O3 Fe2O3 K2O MgO CaO MnO Na2O TiO2 SO3 P2O5 Red mud 28.75 29.96 8.01 0.86 0.94 19.91 0.05 4.61 5.03 0.94 0.37 Fly ash 44.42 37.93 4.79 0.47 0.29 5.80 0.02 0.16 1.96 3.40 0.43 Lime 2.75 0.96 0.88 0.37 6.05 87.87 — — — 0.86 0.08 Desulphurization gypsum 14.55 12.38 1.76 0.29 0.78 29.14 — 0.50 0.70 39.36 0.12 表 2 自流型充填料漿各組分配比
Table 2. Designed proportion of self-flowing filling slurry
Number Red mud∶fly ash∶desulfurization
gypsum∶lime∶activatorSolid content / % R3F7 3∶7∶/∶/∶/ 60 R4F6 4∶6∶/∶/∶/ 60 R5F5 5∶5∶/∶/∶/ 60 R6F4 6∶4∶/∶/∶/ 60 G1L2J0 4∶6∶0.6∶0.9∶/ 58 G2L2J0 4∶6∶0.9∶0.9∶/ 58 G3L2J0 4∶6∶1.2∶0.9∶/ 58 G2L1J0 4∶6∶0.9∶0.7∶/ 58 G2L3J0 4∶6∶0.9∶1.1∶/ 58 G2L2J1 4∶6∶0.9∶0.9∶0.1 58 G2L2J2 4∶6∶0.9∶0.9∶0.2 58 G2L2J3 4∶6∶0.9∶0.9∶0.3 58 259luxu-164 -
參考文獻
[1] Khairul M A, Zanganeh J, Moghtaderi B. The composition, recycling and utilization of Bayer red mud. Resour Conserv Recycl, 2019, 141: 483 doi: 10.1016/j.resconrec.2018.11.006 [2] Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud–coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438劉曉明, 唐彬文, 尹海峰, 等. 赤泥–煤矸石基公路路面基層材料的耐久與環境性能. 工程科學學報, 2018, 40(4):438 [3] Liu C L, Ma S H, Zheng S L, et al. Combined treatment of red mud and coal fly ash by a hydro-chemical process. Hydrometallurgy, 2018, 175: 224 doi: 10.1016/j.hydromet.2017.11.005 [4] Liu Z B, Li H X. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy, 2015, 155: 29 doi: 10.1016/j.hydromet.2015.03.018 [5] Wang L, Chen L, Tsang D C W, et al. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environ Int, 2019, 133: 105247 doi: 10.1016/j.envint.2019.105247 [6] Liu X, Han Y X, He F Y, et al. Research status on hazards and comprehensive utilization of red mud. Met Mine, 2018, 47(11): 7柳曉, 韓躍新, 何發鈺, 等. 赤泥的危害及其綜合利用研究現狀. 金屬礦山, 2018, 47(11):7 [7] Liu S H, Guan X M, Zhang S S, et al. Sintered bayer red mud based ceramic bricks: Microstructure evolution and alkalis immobilization mechanism. Ceram Int, 2017, 43(15): 13004 doi: 10.1016/j.ceramint.2017.07.036 [8] Lu G Z, Zhang T A, Ma L N, et al. Utilization of Bayer red mud by a calcification–carbonation method using calcium aluminate hydrate as a calcium source. Hydrometallurgy, 2019, 188: 248 doi: 10.1016/j.hydromet.2019.05.018 [9] Liu Y, Ni W, Huang X Y, et al. Characteristics of hydration and hardening red mud of Bayer process in carbide slag-flue desulfurization gypsum system. Mater Rev, 2016, 30(14): 120劉英, 倪文, 黃曉燕, 等. 拜耳法低鐵赤泥在電石渣-脫硫石膏體系中的水化硬化特性. 材料導報, 2016, 30(14):120 [10] Li Y C, Min X B, Ke Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manage, 2019, 83: 202 doi: 10.1016/j.wasman.2018.11.019 [11] Hu W, Nie Q K, Huang B S, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. J Clean Prod, 2018, 186: 799 doi: 10.1016/j.jclepro.2018.03.086 [12] Gao S J, Ni W, Zhu L P, et al. Effect of gypsum on strength performance of cemented backfilling materials of red mud-slag system. J Cent South Univ Sci Technol, 2013, 44(6): 2259高術杰, 倪文, 祝麗萍, 等. 脫硫石膏對赤泥–礦渣膠結充填料強度性能的影響. 中南大學學報: 自然科學版, 2013, 44(6):2259 [13] Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640陳蛟龍, 張娜, 李恒, 等. 赤泥基似膏體充填材料水化特性研究. 工程科學學報, 2017, 39(11):1640 [14] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517 [15] Hou C, Zhu W C, Yan B X, et al. Influence of binder content on temperature and internal strain evolution of early age cemented tailings backfill. Construct Build Mater, 2018, 189: 585 doi: 10.1016/j.conbuildmat.2018.09.032 [16] Liu J H, Wu R D, Wu A X, et al. Bleeding characteristics and improving mechanism of self-flowing tailings filling slurry with low concentration. Minerals, 2017, 7(8): 131 doi: 10.3390/min7080131 [17] Nath S K, Kumar S. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Construct Build Mater, 2020, 233: 117294 doi: 10.1016/j.conbuildmat.2019.117294 [18] Li Z F, Zhang J, Li S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud–slag based grouting materials. J Clean Prod, 2020, 245: 118759 doi: 10.1016/j.jclepro.2019.118759 [19] Department of inorganic chemistry, Dalian University of Technology. Inorganic Chemistry. 5th Ed. Beijing: Higher Education Press, 2006大連理工大學無機化學教研室. 無機化學. 5版. 北京: 高等教育出版社, 2006 [20] Zhou X X, Shen J M. Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer. Construct Build Mater, 2020, 242: 118168 doi: 10.1016/j.conbuildmat.2020.118168 [21] Xiao L G, Zhang H L. Influence of new composite early strength agent on mechanical properties of concrete(mortar) and its mechanism analysis. Bull Chin Ceram Soc, 2018, 37(7): 2115肖力光, 張洪磊. 新型復合早強劑對混凝土(砂漿)力學性能的影響及機理分析. 硅酸鹽通報, 2018, 37(7):2115 [22] Qiu Y B, Wang Q P. Study on the pozzolanic activity of fly ash activated by NaSO4. Mater Rev, 2013, 27(12): 121 doi: 10.3969/j.issn.1005-023X.2013.12.029邱軼兵, 王慶平. NaSO4激發粉煤灰火山灰活性研究. 材料導報, 2013, 27(12):121 doi: 10.3969/j.issn.1005-023X.2013.12.029 [23] Liu P F, Lan M Z, Xiang B F, et al. Influence of hydroxypropyl methyl cellulose ether on properties of machine spraying mortar. New Build Mater, 2016, 43(7): 49 doi: 10.3969/j.issn.1001-702X.2016.07.013劉鵬飛, 蘭明章, 項斌峰, 等. 羥丙基甲基纖維素醚對機噴水泥砂漿性能的影響. 新型建筑材料, 2016, 43(7):49 doi: 10.3969/j.issn.1001-702X.2016.07.013 [24] Jiang G Z, Wu A X, Wang Y M, et al. Effect of compound activator on copper slag activity and preparation of filling materials. Chin J Eng, 2017, 39(9): 1305姜關照, 吳愛祥, 王貽明, 等. 復合激發劑對銅爐渣活性影響及充填材料制備. 工程科學學報, 2017, 39(9):1305 [25] Keeley P M, Rowson N A, Johnson T P, et al. The effect of the extent of polymerization of a slag structure on the strength of alkali-activated slag binders. Int J Miner Process, 2017, 164: 37 doi: 10.1016/j.minpro.2017.05.007 [26] Kwan S, La Rosa-Thompson J, Grutzeck M W. Structure and phase relations of aluminum-substituted calcium silicate hydrate. J Am Ceram Soc, 1996, 79(4): 967 doi: 10.1111/j.1151-2916.1996.tb08533.x -