<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種鉛基快堆用高硅不銹鋼的熱處理工藝優化及鉛鉍相容性研究

趙熹 陳映雪 曾獻 龔星 張勇 殷振國 燕青芝

趙熹, 陳映雪, 曾獻, 龔星, 張勇, 殷振國, 燕青芝. 一種鉛基快堆用高硅不銹鋼的熱處理工藝優化及鉛鉍相容性研究[J]. 工程科學學報, 2020, 42(11): 1488-1498. doi: 10.13374/j.issn2095-9389.2019.11.19.002
引用本文: 趙熹, 陳映雪, 曾獻, 龔星, 張勇, 殷振國, 燕青芝. 一種鉛基快堆用高硅不銹鋼的熱處理工藝優化及鉛鉍相容性研究[J]. 工程科學學報, 2020, 42(11): 1488-1498. doi: 10.13374/j.issn2095-9389.2019.11.19.002
ZHAO Xi, CHEN Ying-xue, ZENG Xian, GONG Xing, ZHANG Yong, YIN Zhen-guo, YAN Qing-zhi. Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application[J]. Chinese Journal of Engineering, 2020, 42(11): 1488-1498. doi: 10.13374/j.issn2095-9389.2019.11.19.002
Citation: ZHAO Xi, CHEN Ying-xue, ZENG Xian, GONG Xing, ZHANG Yong, YIN Zhen-guo, YAN Qing-zhi. Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application[J]. Chinese Journal of Engineering, 2020, 42(11): 1488-1498. doi: 10.13374/j.issn2095-9389.2019.11.19.002

一種鉛基快堆用高硅不銹鋼的熱處理工藝優化及鉛鉍相容性研究

doi: 10.13374/j.issn2095-9389.2019.11.19.002
基金項目: 國家自然科學基金大科學裝置科學研究聯合基金資助項目(U1932166)
詳細信息
    通訊作者:

    E-mail:zhangyong_rfc@cgnpc.com.cn

  • 中圖分類號: TG142.7

Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application

More Information
  • 摘要: 針對自行制備的11Cr?1Si鐵素體/馬氏體不銹鋼開展了熱處理制度探索,及力學性能、鉛鉍環境靜態腐蝕和應力腐蝕行為研究。熱處理研究結果表明,11Cr?1Si不銹鋼在經過調質熱處理后(950 ℃/60 min+750 ℃/120 min)能夠在保證較高強度的同時獲得良好的韌性。500 ℃靜態腐蝕結果表明,11Cr?1Si在經過3368 h腐蝕后表面形成的氧化膜致密且連續,沒有出現開裂和脫落,并且整體氧化速率較緩慢,沒有觀察到鉛鉍向材料基體內的滲透,表現出良好的抗腐蝕性能。應力腐蝕實驗發現,11Cr?1Si不銹鋼在350 ℃和400 ℃下存在本征脆化,但是在450 ℃下沒有觀察到鉛鉍致脆現象。

     

  • 圖  1  11Cr?1Si不銹鋼軋態掃描電鏡形貌

    Figure  1.  SEM image of 11Cr?1Si steel after hot rolling

    圖  2  11Cr?1Si不銹鋼熱處理工藝過程

    Figure  2.  Schematic of heat treatment procedure for 11Cr?1Si steel

    圖  3  液態鉛鉍環境腐蝕裝置。(a)靜態腐蝕;(b)慢應變速率拉伸測試

    Figure  3.  Photographs of LBE corrosion test apparatus: (a) static corrosion test apparatus; (b) slow strain?rate tensile test apparatus

    圖  4  11Cr?1Si不銹鋼不同溫度淬火后掃描電鏡形貌。(a)900 ℃;(b)950 ℃;(c)1000 ℃;(d)1050 ℃;(e)1100 ℃

    Figure  4.  SEM images of 11Cr?1Si steel after water quenching at different temperatures: (a) 900 ℃; (b) 950 ℃; (c) 1000 ℃; (d) 1050 ℃; (e) 1100 ℃

    圖  5  11Cr?1Si不銹鋼拉伸性能及不同溫度樣品斷口掃描電鏡照片。(a)拉伸實驗結果;(b)室溫;(c)200 ℃;(d)400 ℃;(e)600 ℃;(f)650 ℃

    Figure  5.  Tensile properties and SEM images of fracture surface of 11Cr?1Si steel at different temperatures: (a) tensile results; (b) room temperature; (c) 200 ℃; (d) 400 ℃; (e) 600 ℃; (f) 650 ℃

    圖  6  12Cr CNS樣品1000 h腐蝕形貌。(a)截面腐蝕形貌;(b)能譜分析區域;(c~g)Bi、Pb、O、Fe、Cr元素面分布分析結果

    Figure  6.  Corrosion results of 12Cr CNS after 1000 h exposure in static LBE: (a) SEM image of cross section; (b) map analysis area; (c–g) distributions of different elements

    圖  7  11Cr?1Si樣品1000 h腐蝕形貌。(a)截面腐蝕形貌;(b)能譜分析區域;(c~h)Bi、Pb、O、Fe、Cr、Si元素面分布分析結果

    Figure  7.  Corrosion results of 11Cr?1Si after 1000 h exposure in static LBE: (a) SEM image of cross section; (b) map analysis area; (c–h) distributions of different elements

    圖  8  12Cr CNS樣品2000 h腐蝕結果。(a)截面腐蝕形貌;(b)能譜線掃描區域;(c)線掃描結果

    Figure  8.  Corrosion results of 12Cr CNS after 2000 h exposure in static LBE: (a) SEM image of cross section; (b) EDS line scan area; (c) line scan results

    圖  9  11Cr?1Si樣品2000 h腐蝕結果。(a)截面腐蝕形貌;(b)能譜線掃描區域;(c)線掃描結果

    Figure  9.  Corrosion results of 11Cr?1Si after 2000 h exposure in static LBE: (a) SEM image of cross section; (b) EDS line scan area; (c) line scan results

    圖  10  12Cr CNS樣品3368 h腐蝕結果。(a)截面腐蝕形貌;(b)能譜線掃描區域;(c)線掃描結果

    Figure  10.  Corrosion results of 12Cr CNS after 3368 h exposure in static LBE: (a) SEM image of cross section; (b) EDS line scan area; (c) line scan results

    圖  11  11Cr?1Si樣品3368 h腐蝕結果。(a)截面腐蝕形貌;(b)能譜線掃描區域;(c)線掃描結果

    Figure  11.  Corrosion results of 11Cr?1Si after 3368 h exposure in static LBE: (a) SEM image of cross section; (b) EDS line scan area; (c) line scan results

    圖  12  兩種材料在500 ℃靜態鉛鉍中的氧化動力學曲線

    Figure  12.  Oxidation curves in static LBE at 500 ℃ for 12Cr CNS and 11Cr?1Si steels

    圖  13  11Cr?1Si鋼不同溫度慢應變速率拉伸曲線。(a)350 ℃;(b)400 ℃;(c)450 ℃

    Figure  13.  Slow strain rate tensile curves of 11Cr?1Si steel at different temperatures: (a) 350 ℃; (b) 400 ℃; (c) 450 ℃

    圖  14  11Cr?1Si不銹鋼350 ℃鉛鉍環境拉伸樣品斷口照片

    Figure  14.  Fracture surface of 11Cr?1Si specimen tested at 350 ℃ in LBE

    圖  15  11Cr?1Si不銹鋼450 ℃鉛鉍環境拉伸樣品斷口照片

    Figure  15.  Fracture surface of 11Cr?1Si specimen tested at 450 ℃ in LBE

    表  1  9/12Cr CNS和11Cr?1Si不銹鋼主要合金元素對照

    Table  1.   Chemical composition of 9/12Cr CNS and 11Cr?1Si steels

    MaterialChemical composition (mass fraction) /%
    FeCrNiMoWMnVSiTi
    11Cr?1SiBal.10.870.690.730.610.810.300.910.07
    9Cr CNSBal.9.5500.481.210.60.260.050.05
    12Cr CNSBal.12.001.01.11.00.20.150.03
    下載: 導出CSV

    表  2  11Cr?1Si不銹鋼淬火溫度對δ-鐵素體含量的影響

    Table  2.   Area fraction variation of δ-ferrite as a function of austenitization temperature of 11Cr?1Si steel

    Austenitization temperature/℃Area fraction of δ-ferrite/%
    90014.9
    95013.7
    100013.4
    105012.7
    110014.8
    下載: 導出CSV

    表  3  11Cr?1Si不銹鋼熱處理溫度對沖擊韌性的影響

    Table  3.   Charpy impact energy of 11Cr?1Si steel after heat treatment at various temperatures

    CategoryAustenitization temperature + tempering temperature/℃Absorbing energy/J
    Variation of austenitization temperature950 + 75064.02
    1000 + 75050.15
    1050 + 75015.30
    Tempering temperature variation950 + 70044.92
    950 + 75064.02
    950 + 80075.94
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Alemberti A. The lead fast reactor: an opportunity for the future? Engineering, 2016, 2(1): 59 doi: 10.1016/J.ENG.2016.01.022
    [2] Allen T R, Crawford D C. Lead-cooled fast reactor systems and the fuels and materials challenges. Sci Technol Nucl Installations, 2007: 097486
    [3] Allen T R, Sridharan K, Tan L, et al. Materials challenges for generation IV nuclear energy systems. Nucl Technol, 2008, 162(3): 342 doi: 10.13182/NT08-A3961
    [4] Fazio C, Sobolev V, Aerts A, et al. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies. 2015 Ed. Issy-les-Moulineaux: OECD, 2015
    [5] Zhang J S. A review of steel corrosion by liquid lead and lead–bismuth. Corros Sci, 2009, 51(6): 1207 doi: 10.1016/j.corsci.2009.03.013
    [6] Wang J M, Farzin A, Du D H, et al. Electrochemical corrosion behaviors of 316L stainless steel used in PWR primary pipes. Chin J Eng, 2017, 39(9): 1355

    汪家梅, Farzin Arjmand, 杜東海, 等. 壓水堆一回路主管道316L不銹鋼的電化學腐蝕行為. 工程科學學報, 2017, 39(9):1355
    [7] Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead–bismuth. J Nucl Mater, 2001, 295(2-3): 149 doi: 10.1016/S0022-3115(01)00570-0
    [8] Zhao X, Yan Q Z, Zeng X, et al. Preliminary research on corrosion behavior of vacuum smelting-casting ODS steel in lead-bismuth eutectic. Progr Rep China Nucl Sci Technol, 2019, 6: 92

    趙熹, 燕青之, 曾獻, 等. 熔鑄ODS鋼液態鉛鉍腐蝕行為初步研究. 中國核科學技術進展報告, 2019, 6:92
    [9] Chernov V M, Kardashev B K, Moroz K A. Low-temperature embrittlement and fracture of metals with different crystal lattices–Dislocation mechanisms. Nucl Mater Energy, 2016, 9: 496 doi: 10.1016/j.nme.2016.02.002
    [10] Gabriele F D, Amore S, Scaiola C, et al. Corrosion behaviour of 12Cr-ODS steel in molten lead. Nucl Eng Des, 2014, 280: 69 doi: 10.1016/j.nucengdes.2014.09.030
    [11] Xu Y L, Zhang J Q, Chu F M, et al. Compatibility of 9Cr2WVTa and 12CrWTi-ODS steel with flowing Pb. Ann Rep China Inst Atom Energy, 2008: 4
    [12] Schroer C, Konys J. Quantification of the long-term performance of steels T91 and 316L in oxygen-containing flowing lead-bismuth eutectic at 550 ℃. J Eng Gas Turbines Power, 2010, 132(8): 082901 doi: 10.1115/1.4000364
    [13] Schroer C, Wedemeyer O, Novotny J, et al. Performance of 9% Cr steels in flowing lead-bismuth eutectic at 450 and 550 C, and 10–6 mass% dissolved oxygen. Nucl Eng Des, 2014, 280: 661 doi: 10.1016/j.nucengdes.2014.01.023
    [14] Zhang J S. Long-term behaviors of oxide layer in liquid lead–bismuth eutectic (LBE), Part I: model development and validation. Oxid Met, 2013, 80(5-6): 669 doi: 10.1007/s11085-013-9450-7
    [15] Ye C Q, Vogt J B, Serre I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: The role of loading rate and of the oxygen content in the liquid metal. Mater Sci Eng A, 2014, 608: 242 doi: 10.1016/j.msea.2014.04.082
    [16] Kolman D G. A review of recent advances in the understanding of liquid metal embrittlement. Corrosion, 2019, 75(1): 42 doi: 10.5006/2904
    [17] Long B, Tong Z, Groschel F, et al. Liquid Pb–Bi embrittlement effects on the T91 steel after different heat treatments. J Nucl Mater, 2008, 377(1): 219 doi: 10.1016/j.jnucmat.2008.02.050
    [18] Van den Bosch J, Bosch R W, Sapundjiev D, et al. Liquid metal embrittlement susceptibility of ferritic–martensitic steel in liquid lead alloys. J Nucl Mater, 2008, 376(3): 322 doi: 10.1016/j.jnucmat.2008.02.008
    [19] Auger T, Lorang G. Liquid metal embrittlement susceptibility of T91 steel by lead–bismuth. Scripta Mater, 2005, 52(12): 1323 doi: 10.1016/j.scriptamat.2005.02.027
    [20] Van den Bosch J, Coen G, Hosemann P, et al. On the LME susceptibility of Si enriched steels. J Nucl Mater, 2012, 429(1-3): 105 doi: 10.1016/j.jnucmat.2012.05.017
    [21] Yang X, Liao B, Liu J, et al. Embrittlement phenomenon of China low activation martensitic steel in liquid Pb–Bi. Acta Metall Sin, 2017, 53(5): 513 doi: 10.11900/0412.1961.2016.00576

    楊旭, 廖波, 劉堅, 等. 中國低活化馬氏體鋼在液態Pb–Bi中的脆化現象. 金屬學報, 2017, 53(5):513 doi: 10.11900/0412.1961.2016.00576
    [22] Gong X, Marmy P, Qin L, et al. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr–1Mo steel under low cycle fatigue in lead–bismuth eutectic at 160–450 ℃. J Nucl Mater, 2016, 468: 289 doi: 10.1016/j.jnucmat.2015.06.021
    [23] Chen Y X, Yan Q Z, Zhang X X, et al. Microstructure characteristics and properties of yttrium-bearing 9Cr ferritic-martensitic steel cladding tubes. Mater Res Express, 2019, 6(9): 0965c6 doi: 10.1088/2053-1591/ab332e
    [24] Dai Y, Long B, Groeschel F. Slow strain rate tensile tests on T91 in static lead–bismuth eutectic. J Nucl Mater, 2006, 356(1-3): 222 doi: 10.1016/j.jnucmat.2006.05.039
    [25] Shchukin E D. Physical–chemical mechanics in the studies of Peter A. Rehbinder and his school. Colloids Surf A, 1999, 149(1-3): 529 doi: 10.1016/S0927-7757(98)00607-4
    [26] Klecka J, Gabriele F D, Hojna A. Mechanical properties of the steel T91 in contact with lead. Nucl Eng Des, 2015, 283: 131 doi: 10.1016/j.nucengdes.2014.10.004
  • 加載中
圖(15) / 表(3)
計量
  • 文章訪問數:  2147
  • HTML全文瀏覽量:  1209
  • PDF下載量:  85
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-19
  • 刊出日期:  2020-11-25

目錄

    /

    返回文章
    返回